基于Java的开源数据挖掘解决方案:RapidMiner 经验

Java语言开发,RapidMiner(前身是Yale)已经是一个比较成熟的数据挖掘解决方案了,包括常见的机器学习、NLP、推荐、预测等方法(推荐只占其中很小一部分),而且带有GUI的数据分析环境,数据ETL、预处理、可视化、评估、部署等整套系统都有。

jopen 2013-11-11   41538   0

六款强大的开源数据挖掘工具推荐 经验

当今这个大数据时代,数据就等于金钱。随着向一个基于应用的领域过渡,数据则呈现出了指数级增长。然而,百分之八十的数据是非结构化的,因此它需要一个程序和方法来从中提取有用信息,并且将其转换为可理解、可用的结构化形式。

jopen 2014-10-14   60860   0

机器学习数据挖掘免费电子书集合 经验

开源免费电子书集合,包括机器学习、数据挖掘、自然语言处理和数学等。 本文是WIKI页面,请自由的参与到这个列表的贡献。 机器学习/数据挖掘 An Introduction To Statistical

jopen 2015-01-08   20276   0

数据挖掘中易犯的10大错误 经验

译文出处: Sunstone 按照Elder博士的总结,这10大易犯错误包括: 0. 缺乏数据(Lack Data) 1. 太关注训练(Focus on Training) 2. 只依赖一项技术(Rely

jopen 2015-08-30   10044   0

数据挖掘(9):BP神经网络算法与实践 经验

原文出处: fengfenggirl(@也爱数据挖掘) 神经网络曾经很火,有过一段低迷期,现在因为深度学习的原因继续火起来了。神经网络有很多种:前向传输网络、反向传输网络、递归神经网络、卷

jopen 2015-08-31   26355   0

数据分析/数据挖掘/机器学习---- 必读书目 经验

总结一下我读过的机器学习/数据挖掘/数据分析方面的书,有的适合入门,有的适合进阶,没有按照层次排列,先总结一下,等总结的差不多了再根据入门--->进阶分块写。下面列的书基本上我写的都是读完过的,不然不敢写,怕误人子弟

数据挖掘十大算法--K近邻算法 经验

四、对 k - 近邻算法的说明 按距离加权的 k - 近邻算法是一种非常有效的归纳推理方法。它对训练数据中的噪声有很好的鲁棒性,而且当给定足够大的训练集合时它也非常有效。注意通过取 k 个近邻的加权平均,可以消除孤立的噪声样例的影响。

jopen 2016-01-18   24663   0

数据挖掘学习笔记之人工神经网络(一) 经验

由于本人这段时间在学习数据挖掘的知识,学习了人工神经网络刚好就把学习的一些笔记弄出来,也为以后自己回头看的时候方便些。 神经网络学习方法对于逼近实数值、离散值或向量值的目标函数提供了一种健壮性很强

jopen 2016-01-18   22791   0
P23

  数据仓库和数据挖掘在商业活动中的应用 文档

1. 数据仓库和数据挖掘在商业活动中的应用刘建民 博士 首席顾问1 2. 简介●数据仓库是公司成功的关键因素 ●随着数据的数量以指数速度增长,将原始数据转化为可供决策的信息就变得十分关键 ●这个演讲将

gaoguoren 2011-08-28   3983   0
P7

  数据挖掘技术在移动通信行业中的应用 文档

数据挖掘技术在移动通信行业中的应用 数据挖掘技术在移动通信行业中的应用 【关键词】 数据挖掘. 移动大客户. 【聚类检索】 同类文献 引用文献 被引用文献 【摘要】 该文在这些研究的基础上,介绍了一

liuxl 2011-11-16   467   0
P4

  统计学和数据挖掘:交叉学科 文档

统计学和数据挖掘:交叉学科 摘要:统计学和数据挖掘有很多共同点,但与此同时它们也有很多差异。本文讨论了两门学科的性质,重点论述它们的异同。 关键词:统计学 知识发现 1. 简介 统计学和数据挖掘有着共同

kklion 2012-09-27   3722   0

数据挖掘数据分析,人工智能及机器学习课程汇总 经验

问答 数据科学是什么? 7 我怎样才能成为一个数据科学家? 4 科学数据是如何从传统的统计分析不同吗? 1 相关课程 计算数据概念,伯克利分校 9 实用机器学习,伯克利分校 4 人工智能伯克利分校 1

jopen 2015-01-09   35211   0

数据是不是数据挖掘的延伸? 经验

数据挖掘基于数据库理论,机器学习,人工智能,现代统计学的迅速发展的交叉学科,在很多领域中都有应用。涉及到很多的算法,源于机器 学习的神经网络,决策树,也有基于统计学习理论的支持向量机,分类回归树,和关

jopen 2015-01-08   32041   0

十大数据挖掘算法及各自优势 经验

International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank

jopen 2014-09-04   36897   0
算法  

[机器学习&数据挖掘]朴素贝叶斯数学原理 经验

Xn=xn)=P(X1=x1)P(X2=x2)......P(Xn=xn),其次基于贝叶斯定理,对于给定的训 练数据集,首先基于特征条件独立假设学习联合概率分布,然后基于此模型,对于给定的输入向量,利用贝叶斯公式求出后验概率最大的输出分类标签

jopen 2015-06-25   21903   0

《集体智慧编程》之机器学习&数据挖掘框架认识 经验

很对我的胃口。 “假如你训练了一只狗,若干年后,如果它忽然有一天能帮你擦鞋洗衣服,那么这就是数据挖掘;要是忽然有一天,你发现狗化装成一个老太婆消失了,那么这就是机器学习。” ——杨强,香港科技大学

jopen 2015-03-29   48928   0

机器学习和数据挖掘推荐书单 经验

com/BaiYiShaoNian/p/4907292.html 机器学习和数据挖掘推荐书单 有了这些书,再也不愁下了班没妹纸该咋办了。慢慢来,认真学,揭开机器学习和数据挖掘这一神秘的面纱吧! 《机器学习实战》 :本书第

jopen 2015-10-24   44396   0

机器学习与数据挖掘的学习路线图1 经验

这样处理。而且在本文后面若提到这两个名词,我们所表示的意思是一致的。 但无论是机器学习,还是数据挖掘,你一定听说过很多很多,名字叼炸天的传说中的,“算法”,比如:SVM,神经网络,Logistic回归,决策树、EM、

jopen 2015-11-17   21161   0

数据挖掘十大经典算法(详解) 经验

数据挖掘十大经典算法 一、 C4.5 C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3 算法.   C4.5算法继承了ID3算法的优点,并在以下几方面对ID3算法进行了改进:

jopen 2016-01-18   100815   0

数据挖掘十大算法----EM算法(最大期望算法) 经验

无法观测的隐藏变量(Latent Variable)。 最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。 可以有一些比较形象的比喻说法把这个算法讲清楚。

jopen 2016-01-18   18478   0
1 2 3 4 5 6 7 8 9 10