假设有一些数据相关的问题亟待你解决。在此之前你听说过机器学习算法可以帮助解决这些问题,于是你想借此机会尝试一番,却苦于在此领域没有任何经验或知识。 你开始谷歌一些术语,如“机器学习模型”和“机器学习方法论”,但一段时间后,你发
and the chunker was refactored。 OpenNLP 是一个机器学习工具包,用于处理自然语言文本。支持大多数常用的 NLP 任务,例如:标识化、句子切分、部分词性标注、名称抽取、组块、解析等。
Mahout 是一个利用Map/Reduce的机器学习算法库,其思想源于斯坦福大学几个学者在2006年的nips会议上发表的一篇文章“Map- Reduct for Machine Learning on
Ng(吴恩达)则宣布加入百度的深度学习研究院。最近几天,他正在密集地为百度面试人才,奔走于 Coursera 的新办公楼和百度的新办公楼之间。他说,能和他多年的好朋友、著名机器学习专家余凯一起工作,他感到相当兴奋。
com/cn/news/2015/06/DMLC-github 为了实现分布式机器学习领域中代码的共享与共同开发, 分布式机器学习社区(DMLC)近日正式发布 。作为一个开源项目,DMLC的相关代码直接托管在
5月21日消息,由百度牵头的分布式深度机器学习开源平台日前正式面向公众开放,该平台隶属于名为“深盟”的开源组织,该组织核心开发者来自百度深度学习研究院(IDL),微软亚洲研究院、华盛顿大学、纽约大学、
是这样的: 机器人评论:在吗?对方:在(不管回答什么,都触发下一条评论)机器人评论:我们是一个年轻的创业团队,有一个不情之请。对方:xxxxx(不管回答什么,都触发下一条评论)机器人评论:邀请你来写游记blablabla
TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFlow的表现比第一代的DistBelief快了2倍。 TensorFlow 内建深度学习的扩展支持,任何能够用计
在本篇文章中,我将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践。这篇文档也算是EasyPR开发的番外篇,从这里开始,必须对机器学习了解才能进一步介
Ebay 和携程从事数据分析与机器学习方面的工作,关注统计与机器学习方面的研究、大数据风控系统的建设。本文探讨的是:互联网金融时代,如何借助互联网思维利用 机器学习方法建立高效安全的大数据风控系统?
8个最好的机器学习速查表(Cheat Sheets)
SystemML是灵活的,可伸缩机器学习 (ML) 语言,使用Java编写。可实现三大功能:(1) 可定制算法;(2) 多个执行模式,包括单个,Hadoop 批量和 Spark 批量;(3) 自动优化。
个月免费试用期,不过卡巴斯基并不打算这么做。卡巴斯基所提供的免费防病毒应用并没有广告,但是会从免费用户处收集数据来改善机器学习算法,从而更好的打磨所有的产品和平台。 尽管全球开放日期为 7 月 25 日,但是根据地区差异可能需要等待一段时间。公司创始人
谷歌 AutoML 系统最近出产了一系列机器学习代码,其效率甚至比研究人员自身还要高。显然,这是对“人类优越论”的又一次打击,因为机器人“学生”们已经成为了“自我复制”的大师。AutoML 是在人工智
Oryx的目标是帮助Hadoop用户搭建并部署能够实时查询的机器学习模型,例如垃圾邮件过滤和推荐引擎。随着数据的不断流入,Oryx还将支持自我更新。 无论从建模还是部署,Oryx都可以随需扩展
在解释 机器学习 的基本概念的时候,我发现自己总是回到有限的几幅图中。以下是我认为最有启发性的条目列表。 1. Test and training error: 为什么低训练误差并不总是一件好的事情呢:
Discriminant 线性判别分析/Fisher线性判别),EL(Ensemble Learning集成学习Boosting,Bagging,Stacking),AdaBoost(Adaptive Boosting
在机器学习和数据挖掘中,我们经常需要知道个体间差异的大小,进而评价个体的相似性和类别。最常见的是数据分析中的相关分析,数据挖掘中的分类和聚 类算法,如 K 最近邻(KNN)和 K 均值(K-Means
Kaggle比赛源代码和讨论的收集整理。
逻辑回归(Logistic Regression)是机器学习中的一种分类模型,由于算法的简单和高效,在实际中应用非常广泛。本文作为美团机器学习InAction系列中的一篇,主要关注逻辑回归算法的数学