机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里IT经理网为您总结一下常见的机器学习算法,以供您在工作和学习中参考。 机器学习的算法很多。很多
SmileMiner是一个包含各种现有的机器学习算法的Java库。主要组件包括: mile 机器学习的核心库 SmileMath 数学函数、排序、随机数生成器、最优化、线性代数、统计分布、假设检验
一直没有更新,向关注该系列的同学们道个歉。尴尬的是,按理说,机器学习介绍与算法一览应该放在最前面写,详细的应用建议应该在讲完机器学习常用算法之后写,突然莫名奇妙在中间插播这么一篇,好像有点打乱主线。
上次我们用JavaScript实现了 线性规划 ,这次我们来聊聊KNN算法。 KNN是 k-Nearest-Neighbours 的缩写,它是一种监督学习算法。KNN算法可以用来做分类,也可以用来解决回归问题。
随着开源思想的逐渐兴起,很多机器学习领域的算法都已经实现为开源的库、包或代码。如何在这些已有资源的基础上进行高效开发,是最近几年热议的话题。那么,是不是公司或个人就不需要再对这些算法进行手动实现了呢?近日,Quora网站发起了对于
关于优化算法的求解,书上已经介绍了很多的方法,比如有梯度下降法,坐标下降法,牛顿法和拟牛顿法。梯度下降法是基于目标函数梯度的,算法的收敛速度是线性的,并且当问题是病态时或者问题规模较大时,收敛速度尤其
单在于其仅包含了两个步骤就能完成强大的功能,复杂在于它的数学推理涉及到比较繁杂的概率公式等。如果只讲简单的,就丢失了EM算法的精髓,如果只讲数学 推理,又过于枯燥和生涩,但另一方面,想把两者结合起来也不是件容易的事。所以,
原文出处: Liu_LongPo的专栏(@Liu_LongPo) KNN 算法其实简单的说就是“物以类聚”,也就是将新的没有被分类的点分类为周围的点中大多数属于的类。它采用测量不同特征值之间的距离
基础概念: (1) 10折交叉验证: 英文名是10-fold cross-validation,用来测试算法的准确性。是常用的测试方法。将数据集分成10份。轮流将其中的9份作为训练数据,1分作为测试数据,进
years. 如何针对某个分类问题决定使用何种机器学习算法? 当然,如果你真心在乎准确率,最好的途径就是测试一大堆各式各样的算法(同时确保在每个算法上也测试不同的参数),最后选择在交叉验证中表现最好的。倘若你只是想针对你的问题寻找一个
机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里 IT 经理网为您总结一下常见的机器学习算法,以供您在工作和学习中参考。 机器学习的算法很多。
http://blog.jobbole.com/90325/ Pagerank是Google排名运算法则(排名公式)的一部分,是Google用于用来标识网页的等级/重要性的一种方法,是Google用
of the best Python machine learning libraries and posted them below. In my opinion, Python is one of
Monte (machine learning in pure Python)是一个纯Python机器学习库。它可以迅速构建神经网络、条件随机场、逻辑回归等模型,使用inline-C优化,极易使用和扩展。
在python基本语法入门之后,就要准备选一个研究方向了。Web是自己比较感兴趣的方向,可是,导师这边的数 据处理肯定不能由我做主了。paper、peper、paper……真的挺愁人的 还有几
PyML是一个Python机器学习工具包,为各分类和回归方法提供灵活的架构。它主要提供特征选择、模型选择、组合分类器、分类评估等功能。 Features Classifiers: support vector
Cassowary 是一个纯 Python 实现 Cassowary constraint-solving 算法 ,是 OS X 和 iOS 可视化布局机制的核心形式。 快速开始 Cassowary
KNN算法基础思想前面文章可以参考,这里主要讲解java和python的两种简单实现,也主要是理解简单的思想。 http://blog.csdn.net/u011067360/article/details/23941577
Python实现基于GPU的一些深度学习算法实现,包括 Feed-forward Neural Nets Restricted Boltzmann Machines Deep Belief Nets Autoencoders
K-means方法是一种 非监督学习 的算法,它解决的是 聚类问题。 1、 算法简介 :K-means方法是聚类中的经典算法,数据挖掘十大经典算法之一;算法接受参数k,然后将事先输入的n个数据对象