Python在数据研究、数据分析和数据处理领域有独特的地位,有大量的库可以使用并批量执行。近年来,Python也得到机器学习研究者的青睐,很多机器学习的算法库加入到了Python生态圈。这里介绍一些在
在最近的学习中,看到一些有用的资源就记下来了,现在总结一下,欢迎补充! 机器视觉开源代码合集 计算机视觉算法与代码集锦 计算机视觉的一些测试数据集和源码站点 SIFT官网 SURF
在本篇文章中,我将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践。这篇文档也算是 EasyPR开发的番外篇,从这里开始,必须对机器学习了解才能进一步
net/2016/01/31/机器学习之总结/ 出于文本归类和数据处理之需求,这段时间研究了下文本处理类的机器学习方面的东西。也快过年放假了,在此做一个总结和感受吧。 分词 正如绝大多数的科学研究一样,机器学习的算法
机器学习难,并不是因为数学难,而是因为选择什么工具及Debug难。快速有效Debug是现代机器学习中的必备技能,但机器学习的Debug相比普通程序要难很多:候选错误空间大、调试周期长。 机器学习已
本文汇编了一些机器学习领域的框架、库以及软件(按编程语言排序)。 C++ 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV —它提供C++, C, Python
不幸的是,现在的教育系统在教学上太事无巨细,因此很少给你机会独立学习。但是我们到底应该怎样去自学呢? Metacademy 2 是一个进行自学的很好的工具,目前主要提供机器学习和人工智能方面的知识。自学最令人兴奋的地方
Numpy和Scipy常常结合着使用,Python大多数机器学习库都依赖于这两个模块,绘图和可视化依赖于matplotlib模块,matplotlib的风格与matlab类似。 Python机器学习库非常多,而且大多数开源,主要有:
本文主要回顾下几个常用算法的适应场景和优缺点! 对于你的分类问题,你知道应该如何选择哪一个机器学习算法么?当然,如果你真的在乎精度(accuracy),最好的方法就是通过交叉验证(cross-v
这两年机器学习的概念一直很火,无人车、人脸识别、语音识别,似乎无所不能。但有一点被忽略了,“机器学习”算法只是众多算法的一种,和快速排序、red-black BST 一样,它有自己独特的应用场景,而且
机器学习Machine-Learning 主要内容 前言 课程列表 推荐学习路线 数学基础初级 程序语言能力 机器学习课程初级 数学基础中级 机器学习课程中级 推荐书籍列表 机器学习专项领域学习 前言
自然语言处理 ScalaNLP—机器学习和数值计算库的套装 Breeze —Scala用的数值处理库 Chalk—自然语言处理库。 FACTORIE—可部署的概率建
本文主要回顾下几个常用算法的适应场景和优缺点! 对于你的分类问题,你知道应该如何选择哪一个机器学习算法么?当然,如果你真的在乎精度(accuracy),最好的方法就是通过交叉验证(cross-v
Part 1: 机器学习的前世今生. 既然说机器学习,就从什么机器学习开始,相对而言,机器学习是一个比较泛的概念 初看的话,会觉得机器学习和人工智能,数据挖掘讲的东西很像,实际他们之间的关系可以概括为:
Adaboost是一种组合学习的提升算法,能将多个弱学习算法(甚至只比随机猜测好一点)组合起来,构成一个足够强大的学习模型。 组合学习 组合学习是将多个假说组合起来,并集成它们的预测。比如对于一个
最近学习的重点不在机器学习上面,但是现代的学科就是这么奇妙,错综复杂,玩着玩着,你发现又回到了人工智能这一块。所以干脆好好整理下当下令很多 人如痴如醉,但又不容易入门的机器学习。一来给大多数还没有入门
武汉理工大学《通信工程应用技术》课程设计说明书 课程设计任务书 学生姓名: 专业班级: 指导教师: 工作单位: 信息工程学院 题 目: 机器视觉 初始条件: Matlab软件平台 要求完成的主要任务: 对机器视觉系统
大数据的核心:数据挖掘。从头至尾我们都脱离不了数据挖掘。其实从大学到现在一直都接触数据挖掘,但是我们不关心是什么是数据挖掘,我们关心的是我们如何通过数据挖掘过程中找到我们需要的东西,而我们更关心的是这个过程是什么?如何开始?
9本学习数据挖掘与数据分析的免费书籍
1. 数据挖掘 2. 为什么要进行数据挖掘 数据挖掘的研究现状 数据挖掘的过程 数据挖掘的主要方法 面临的问题 下一步的研究方向 3. 为什么要进行数据挖掘? 4. (本页无文本内容) 5. (本页无文本内容)