,广告CTR预估使用最多的基础算法还是L1正则化的Logistic Regression。 机器学习任务主要分为两种:Supervised Machine Learning 和 Unsupervised
Milk是Python的一个机器学习工具箱,其重点是提供监督分类法与几种有效的分类分析:SVMs(基于libsvm),K-NN,随机森林经济和决策树。它还可以进行特征选择。这些分类可以在许多方面相结合
存在一个样本数据集合(也称训练样本集),并且样本集中每个数据都存在标签。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。 我们一般只选择样本集中前k(k通常是不大于20的整数)个最相似的数据,最后选择k个最相似数据中出现次数最多的分类,作为新数据的分类。
原文出处: Liu_LongPo的专栏(@Liu_LongPo) K-means算法属于无监督学习聚类算法,其计算步骤还是挺简单的,思想也挺容易理解,而且还可以在思想中体会到EM算法的思想。 K-means
Apache MADlib 是为数据科学提供的 SQL 大数据机器学习工具。Apache MADlib 拥有强大的大数据分析能力。Apache MADlib 支持 Postgres, Pivotal Greenplum
ora的 工程副总裁Xavier Amatriain 在Netflix和Quora从事推荐系统和机器学习工作时所 总结的20条经验教训 。 更多的数据 & 更好的模型 并不是数据越多结果就越好
Fuzzy 机器学习框架是一个程序库和一个使用直觉模糊数据的机器学习的GUI前端。该方法是基于直觉模糊集和可能性理论。进一步的特点是模糊的功能和类;基于语言 变量的数值,枚举的功能和特点;用户自定义特
面图表中包含的一些参数信息,例如CMOS像素、重量等(下图)。 目前Google正在通过机器学习技术区分哪些是包含有用信息的图表(table),哪些是无效(例如网页样式设计)的图表,然后系统会根据相关度和质量来决定显示哪些信息。
Service 微软于近期发布了 Azure ML 。这是一个基于云的机器学习平台,旨在帮助基于过去的行为对未来事件进行预测。微软已经将机器学习应用于 Bing、Xbox 和其他产品多年。但是,这是微软首次将内部技术以云服务的方式提供给外界使用。
Services 开发机器学习解决方案提升现有的预测算法并不是一件容易的事情。这需要大量的工作来保证其正确性,包括清除数据、建立基础结构、测试和再测试模型以及最终部署算法。 这里有六种机器学习服务,它们可以帮助你减少部署机器学习解决方案的痛苦。
Software Foundation (ASF) 开发的一个全新的开源项目,其主要目标是创建一些可伸缩的机器学习算法,供开发人员在 Apache 在许可下免费使用。该项目已经发展到了它的最二个年头,目前只有一个公共发行版。Mahout
more data always better than better algorithms? 在机器学习中,更多的数据总是比更好的算法好吗?对于 Quora 上的这个问题,Netflix 公司工程总监
据专家建立了各种各样的机器学习模型来帮助识别交易中的风险。作为公司业务的后盾,该团队究竟是如何建立机器学习模型的呢?近日,Airbnb公司 公布 了利用相关数据建立和改善机器学习模型的过程。接下来,本文就对该过程进行简单介绍。
数据科学领域中所采用的机器学习编程语言大相径庭。究竟哪种语言最适合机器学习成为争论不休的话题。近日,密西根州立大学的博士生Sebastian Raschka再次发起了 机器学习编程语言之争 ,分析了自己选择Python的原因。
最近媒体报道谷歌正在利用机器学习帮助处理搜索结果,这引发了人们对于这一人工智能领域的兴趣和疑问。什么是“机器学习”,机器是如何自学的呢?这里有一些 Google 内部关于机器学习的背景介绍。 昨天
你周围的人是否都在谈论着“机器学习”?而你是否也听说过一些算法技术却仍旧缺乏一个全局的认识?本文也许就是一个好的起点…… 智力的新纪元 在科学界,机器学习是目前很热门的话题。通过把计算机和人类的能
SmileMiner是一个汇集了各种机器学习算法的纯Java函数库,它是自包含的,仅仅需要Java标准库。主要部件为:Smile,-Math,-Data,-Graph,-Interpolation,-
BP神经网络,训练的时候,给定一组输入和输出,不断的对权值进行训练,使得输出达到稳定。但BP神经网络并不是适合所有的场景,并不真正的体现出某些场景的真正特点。回到经典的概率论问题,抛硬币问题,假设你已经抛了100次的,90次是正面的,10次是反面的,问现在继续在抛一次,出现正面的概率是多少?如果没有前面几次的经验,很正常的会认为再次出现正面的概率是50%,但由于我们之前有对这个进行了实验,即有了经验了,按照贝叶斯定律,出现正面的概率肯定会大于50%。BP神经网络也少了对前面结果的一种反馈。
为了保证可读性,本文采用意译而非直译。另外,本文版权归原作者所有,翻译仅用于学习 使用JavaScript做机器学习?不是应该用Python吗?是不是我疯了才用JavaScript做如此繁重的计
随着基于人工智能与机器学习的应用如雨后春笋般不断涌现,我们也看到有很多提供类似功能的 API 悄悄登上了舞台。 API 是用于构建软件应用的程序、协议以及工具的组合;本文是对2015 中这个列表的修正与完善,移除了部分被废弃的