跨平台 C++ 通用库,Dlib 18.15 发布
Dlib是一个使用现代C++技术编写的跨平台的通用库,遵守Boost Software licence.
主要特点如下:
1.完善的文档:每个类每个函数都有详细的文档,并且提供了大量的示例代码,如果你发现文档描述不清晰或者没有文档,告诉作者,作者会立刻添加。
2.可移植代码:代码符合ISO C++标准,不需要第三方库支持,支持win32、Linux、Mac OS X、Solaris、HPUX、BSDs 和 POSIX 系统
3.线程支持:提供简单的可移植的线程API
4.网络支持:提供简单的可移植的Socket API和一个简单的Http服务器
5.图形用户界面:提供线程安全的GUI API
6.数值算法:矩阵、大整数、随机数运算等
7.机器学习算法:
8.图形模型算法:
9.图像处理:支持读写Windows BMP文件,不同类型色彩转换
10.数据压缩和完整性算法:CRC32、Md5、不同形式的PPM算法
11.测试:线程安全的日志类和模块化的单元测试框架以及各种测试assert支持
12.一般工具:XML解析、内存管理、类型安全的big/little endian转换、序列化支持和容器类Dlib 18.15 发布,此版本更新内容如下:
新特性
- Added a number of tools for working with 3D data:
- Added the perspective_window which is a tool for displaying 3D point clouds.
- Added camera_transform. It performs the 3D to 2D mapping needed to visualize 3D
data.
- Added point_transform_affine3d as well as functions for creating such transforms:
rotate_around_x(), rotate_around_y(), rotate_around_z(), and translate_point().
- Added draw_solid_circle() for drawing on images.
- Added get_best_hough_point() to the hough_transform.
- Thanks to Jack Culpepper, the python API for object detection now outputs detection
confidences.
- Added lspi, an implementation of the least-squares policy iteration algorithm.
非向后兼容特性
- The shape_predictor and shape_predictor_trainer had a non-optimal behavior when used
with objects that have non-square bounding boxes. This has been fixed but will cause
models that were trained with the previous version of dlib to not work as accurately if
they used non-square boxes. So you might have to retrain your models when updating dlib.
Bug 修复
- Fixed a bug which prevented add_image_rotations() from compiling.
其他改进
- The imglab tool now allows the user to click and drag annotations around by holding
shift and right clicking.
下载:http://sourceforge.net/projects/dclib/files/latest/download