分布式深度学习平台,Apache SINGA 0.2.0 发布
Apache SINGA 是 Apache 在 2015 年 3 月 17 日接纳的一个孵化项目,是个分布式深度学习平台。
Apache SINGA 0.2.0 发布,此版本主要更新内容如下:-
Training on GPU enables training of complex models on a single node with multiple GPU cards.
-
Hybrid neural net partitioning supports data and model parallelism at the same time.
-
Python wrapper makes it easy to configure the job, including neural net and SGD algorithm.
-
RNN model and BPTT algorithm are implemented to support applications based on RNN models, e.g., GRU.
-
Cloud software integration includes Mesos, Docker and HDFS.
-
Visualization of neural net structure and layer information, which is helpful for debugging.
-
Linear algebra functions and random functions against Blobs and raw data pointers.
-
New layers, including SoftmaxLayer, ArgSortLayer, DummyLayer, RNN layers and cuDNN layers.
-
Update Layer class to carry multiple data/grad Blobs.
-
Extract features and test performance for new data by loading previously trained model parameters.
-
Add Store class for IO operations.
SINGA 是基于大型数据集训练大型深度学习模块的常规分布式学习平台。SINGA 支持各种流行的深度学习模块,其中的 feed-forward 模块包括 convolutional neural networks (CNN),能量模块 restricted Boltzmann machine (RBM) 和 recurrent neural networks (RNN)。
SGD 流:
SINGA 概览:
外部依赖:
-
glog(New BSD)
-
google-protobuf(New BSD)
-
openblas(New BSD)
-
zeromq(LGPLv3 + static link exception)
-
czmq(Mozilla Public License Version 2.0)
-
zookeeper(Apache 2.0)