TensorFlow中RNN实现的正确打开方式
tgie2473
7年前
<p><img src="https://simg.open-open.com/show/74505d6493b8913cc70014005389dcf3.jpg"></p> <p>上周写了一篇文章介绍了一下RNN的几种结构,今天就来聊一聊如何在TensorFlow中实现这些结构,这篇文章的主要内容为:</p> <ul> <li><strong>一个完整的、循序渐进的学习TensorFlow中RNN实现的方法。</strong> 这个学习路径的曲线较为平缓,应该可以减少不少学习精力,帮助大家少走弯路。</li> <li>一些可能会踩的坑</li> <li>TensorFlow源码分析</li> <li>一个Char RNN实现示例,可以用来写诗,生成歌词,甚至可以用来写网络小说!(项目地址: <a href="/misc/goto?guid=4959751125386426432"> hzy46/Char-RNN-TensorFlow </a> )</li> </ul> <h2>一、学习单步的RNN:RNNCell</h2> <p><strong>如果要学习TensorFlow中的RNN,第一站应该就是去了解“ <a href="/misc/goto?guid=4959751125484175045"> RNNCell </a> ”,它是TensorFlow中实现RNN的基本单元 </strong> ,每个RNNCell都有一个call方法,使用方式是:(output, next_state) = call(input, state)。</p> <p>借助图片来说可能更容易理解。假设我们有一个初始状态h0,还有输入x1,调用call(x1, h0)后就可以得到(output1, h1):</p> <p> </p> <p><img src="https://simg.open-open.com/show/140cd03413272648da2f320c6eeb2fc1.jpg"></p> <p>再调用一次call(x2, h1)就可以得到(output2, h2):</p> <p> </p> <p><img src="https://simg.open-open.com/show/7e643849516a5dfd62dc7f663f825c2e.jpg"></p> <p>也就是说 <strong>,每调用一次RNNCell的call方法,就相当于在时间上“推进了一步”,这就是RNNCell的基本功能。</strong></p> <p>在代码实现上,RNNCell只是一个抽象类,我们用的时候都是用的它的两个子类BasicRNNCell和BasicLSTMCell。顾名思义,前者是RNN的基础类,后者是LSTM的基础类。这里推荐大家阅读其 <a href="/misc/goto?guid=4959751125566034474" rel="nofollow,noindex"> 源码实现 </a> ,一开始并不需要全部看一遍,只需要看下RNNCell、BasicRNNCell、BasicLSTMCell这三个类的注释部分,应该就可以理解它们的功能了。</p> <p>除了call方法外,对于RNNCell,还有两个类属性比较重要:</p> <ul> <li>state_size</li> <li>output_size</li> </ul> <p>前者是隐层的大小,后者是输出的大小。比如我们通常是将一个batch送入模型计算,设输入数据的形状为(batch_size, input_size),那么计算时得到的隐层状态就是(batch_size, state_size),输出就是(batch_size, output_size)。</p> <p>可以用下面的代码验证一下(注意,以下代码都基于TensorFlow最新的1.2版本):</p> <pre> <code class="language-python">import tensorflow as tf import numpy as np cell = tf.nn.rnn_cell.BasicRNNCell(num_units=128) # state_size = 128 print(cell.state_size) # 128 inputs = tf.placeholder(np.float32, shape=(32, 100)) # 32 是 batch_size h0 = cell.zero_state(32, np.float32) # 通过zero_state得到一个全0的初始状态,形状为(batch_size, state_size) output, h1 = cell.call(inputs, h0) #调用call函数 print(h1.shape) # (32, 128)</code></pre> <p>对于BasicLSTMCell,情况有些许不同,因为LSTM可以看做有两个隐状态h和c,对应的隐层就是一个Tuple,每个都是(batch_size, state_size)的形状:</p> <pre> <code class="language-python">import tensorflow as tf import numpy as np lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(num_units=128) inputs = tf.placeholder(np.float32, shape=(32, 100)) # 32 是 batch_size h0 = lstm_cell.zero_state(32, np.float32) # 通过zero_state得到一个全0的初始状态 output, h1 = lstm_cell.call(inputs, h0) print(h1.h) # shape=(32, 128) print(h1.c) # shape=(32, 128)</code></pre> <h2>二、学习如何一次执行多步:tf.nn.dynamic_rnn</h2> <p>基础的RNNCell有一个很明显的问题:对于单个的RNNCell,我们使用它的call函数进行运算时,只是在序列时间上前进了一步。如使用使用x1、h0得到h1,通过x2、h1得到h2等 <strong>。这样如果我们的序列长度为10,就要调用10次call函数,比较麻烦。对此,TensorFlow提供了一个tf.nn.dynamic_rnn函数,使用该函数就相当于调用了n次call函数。</strong> 即通过{h0,x1, x2, …., xn}直接得{h1,h2…,hn}。</p> <p>具体来说,设我们输入数据的格式为(batch_size, time_steps, input_size),其中time_steps表示序列本身的长度,如在Char RNN中,长度为10的句子对应的time_steps就等于10。最后的input_size就表示输入数据单个序列单个时间维度上固有的长度。另外我们已经定义好了一个RNNCell,调用该RNNCell的call函数time_steps次,对应的代码就是:</p> <pre> <code class="language-python"># inputs: shape = (batch_size, time_steps, input_size) # cell: RNNCell # initial_state: shape = (batch_size, cell.state_size)。初始状态。一般可以取零矩阵 outputs, state = tf.nn.dynamic_rnn(cell, inputs, initial_state=initial_state)</code></pre> <p>此时,得到的outputs就是time_steps步里所有的输出。它的形状为(batch_size, time_steps, cell.output_size)。state是最后一步的隐状态,它的形状为(batch_size, cell.state_size)。</p> <p>此处建议大家阅读 <a href="/misc/goto?guid=4959751125647613626" rel="nofollow,noindex"> tf.nn.dynamic_rnn的文档 </a> 做进一步了解。</p> <h2>三、学习如何堆叠RNNCell:MultiRNNCell</h2> <p>很多时候,单层RNN的能力有限,我们需要多层的RNN。将x输入第一层RNN的后得到隐层状态h,这个隐层状态就相当于第二层RNN的输入,第二层RNN的隐层状态又相当于第三层RNN的输入,以此类推。在TensorFlow中,可以使用tf.nn.rnn_cell.MultiRNNCell函数对RNNCell进行堆叠,相应的示例程序如下:</p> <pre> <code class="language-python">import tensorflow as tf import numpy as np # 每调用一次这个函数就返回一个BasicRNNCell def get_a_cell(): return tf.nn.rnn_cell.BasicRNNCell(num_units=128) # 用tf.nn.rnn_cell MultiRNNCell创建3层RNN cell = tf.nn.rnn_cell.MultiRNNCell([get_a_cell() for _ in range(3)]) # 3层RNN # 得到的cell实际也是RNNCell的子类 # 它的state_size是(128, 128, 128) # (128, 128, 128)并不是128x128x128的意思 # 而是表示共有3个隐层状态,每个隐层状态的大小为128 print(cell.state_size) # (128, 128, 128) # 使用对应的call函数 inputs = tf.placeholder(np.float32, shape=(32, 100)) # 32 是 batch_size h0 = cell.zero_state(32, np.float32) # 通过zero_state得到一个全0的初始状态 output, h1 = cell.call(inputs, h0) print(h1) # tuple中含有3个32x128的向量</code></pre> <p>通过MultiRNNCell得到的cell并不是什么新鲜事物,它实际也是RNNCell的子类,因此也有call方法、state_size和output_size属性。同样可以通过tf.nn.dynamic_rnn来一次运行多步。</p> <p>此处建议阅读 <a href="/misc/goto?guid=4959751125566034474" rel="nofollow,noindex"> MutiRNNCell源码 </a> 中的注释进一步了解其功能。</p> <h2>四、可能遇到的坑1:Output说明</h2> <p>在经典RNN结构中有这样的图:</p> <p> </p> <p><img src="https://simg.open-open.com/show/e1cacbef5d55503484db02f619f052cf.jpg"></p> <p> </p> <p>在上面的代码中,我们好像有意忽略了调用call或dynamic_rnn函数后得到的output的介绍。将上图与TensorFlow的BasicRNNCell对照来看。h就对应了BasicRNNCell的state_size。那么,y是不是就对应了BasicRNNCell的output_size呢? <strong>答案是否定的</strong> 。</p> <p>找到源码中BasicRNNCell的call函数实现:</p> <pre> <code class="language-python">def call(self, inputs, state): """Most basic RNN: output = new_state = act(W * input + U * state + B).""" output = self._activation(_linear([inputs, state], self._num_units, True)) return output, output</code></pre> <p><strong>这句“return output, output”说明在BasicRNNCell中,output其实和隐状态的值是一样的。因此,我们还需要额外对输出定义新的变换,才能得到图中真正的输出y</strong> 。由于output和隐状态是一回事,所以在BasicRNNCell中,state_size永远等于output_size。TensorFlow是出于尽量精简的目的来定义BasicRNNCell的,所以省略了输出参数,我们这里一定要弄清楚它和图中原始RNN定义的联系与区别。</p> <p>再来看一下BasicLSTMCell的call函数定义(函数的最后几行):</p> <pre> <code class="language-python">new_c = ( c * sigmoid(f + self._forget_bias) + sigmoid(i) * self._activation(j)) new_h = self._activation(new_c) * sigmoid(o) if self._state_is_tuple: new_state = LSTMStateTuple(new_c, new_h) else: new_state = array_ops.concat([new_c, new_h], 1) return new_h, new_state</code></pre> <p>我们只需要关注self._state_is_tuple == True的情况,因为self._state_is_tuple == False的情况将在未来被弃用。返回的隐状态是new_c和new_h的组合,而output就是单独的new_h。如果我们处理的是分类问题,那么我们还需要对new_h添加单独的Softmax层才能得到最后的分类概率输出。</p> <p>还是建议大家亲自看一下 <a href="/misc/goto?guid=4959751125735627563" rel="nofollow,noindex"> 源码实现 </a> 来搞明白其中的细节。</p> <h2>五、可能遇到的坑2:因版本原因引起的错误</h2> <p>在前面我们讲到堆叠RNN时,使用的代码是:</p> <pre> <code class="language-python"># 每调用一次这个函数就返回一个BasicRNNCell def get_a_cell(): return tf.nn.rnn_cell.BasicRNNCell(num_units=128) # 用tf.nn.rnn_cell MultiRNNCell创建3层RNN cell = tf.nn.rnn_cell.MultiRNNCell([get_a_cell() for _ in range(3)]) # 3层RNN</code></pre> <p>这个代码其实在TensorFlow 1.2中是可以正确使用的。但在之前的版本中(以及网上很多相关教程),实现方式是这样的:</p> <pre> <code class="language-python">one_cell = tf.nn.rnn_cell.BasicRNNCell(num_units=128) cell = tf.nn.rnn_cell.MultiRNNCell([one_cell] * 3) # 3层RNN</code></pre> <p>如果再TensorFlow 1.2中还按照原来的方式定义,就会引起错误!</p> <h2>六、一个练手项目:Char RNN</h2> <p>上面的内容实际上就是TensorFlow中实现RNN的基本知识了。 <strong>这个时候,建议大家用一个项目来练习巩固一下。此处特别推荐Char RNN项目,这个项目对应的是经典的RNN结构,实现它使用的TensorFlow函数就是上面说到的几个,项目本身又比较有趣,可以用来做文本生成,平常大家看到的用深度学习来写诗写歌词的基本用的就是它了。</strong></p> <p>Char RNN的实现已经有很多了,可以自己去Github上面找,我这里也做了一个实现,供大家参考。项目地址为: <a href="/misc/goto?guid=4959751125816912049" rel="nofollow,noindex"> hzy46/Char-RNN-TensorFlow </a> 。代码的部分实现来自于这篇专栏,在此感谢@天雨粟 。</p> <p>我主要向代码中添加了embedding层,以支持中文,另外重新整理了代码结构,将API改成了最新的TensorFlow 1.2版本。</p> <p>可以用这个项目来写诗(以下诗句都是自动生成的):</p> <pre> <code class="language-python">何人无不见,此地自何如。 一夜山边去,江山一夜归。 山风春草色,秋水夜声深。 何事同相见,应知旧子人。 何当不相见,何处见江边。 一叶生云里,春风出竹堂。 何时有相访,不得在君心。</code></pre> <p>还可以生成代码:</p> <pre> <code class="language-python">static int page_cpus(struct flags *str) { int rc; struct rq *do_init; }; /* * Core_trace_periods the time in is is that supsed, */ #endif /* * Intendifint to state anded. */ int print_init(struct priority *rt) { /* Comment sighind if see task so and the sections */ console(string, &can); }</code></pre> <p>此外生成英文更不是问题(使用莎士比亚的文本训练):</p> <pre> <code class="language-python">LAUNCE: The formity so mistalied on his, thou hast she was to her hears, what we shall be that say a soun man Would the lord and all a fouls and too, the say, That we destent and here with my peace. PALINA: Why, are the must thou art breath or thy saming, I have sate it him with too to have me of I the camples.</code></pre> <p>最后,如果你脑洞够大,还可以来做一些更有意思的事情,比如我用了著名的网络小说《斗破苍穹》训练了一个RNN模型,可以生成下面的文本:</p> <pre> <code class="language-python">闻言,萧炎一怔,旋即目光转向一旁的那名灰袍青年,然后目光在那位老者身上扫过,那里,一个巨大的石台上,有着一个巨大的巨坑,一些黑色光柱,正在从中,一道巨大的黑色巨蟒,一股极度恐怖的气息,从天空上暴射而出 ,然后在其中一些一道道目光中,闪电般的出现在了那些人影,在那种灵魂之中,却是有着许些强者的感觉,在他们面前,那一道道身影,却是如同一道黑影一般,在那一道道目光中,在这片天地间,在那巨大的空间中,弥漫而开…… “这是一位斗尊阶别,不过不管你,也不可能会出手,那些家伙,可以为了这里,这里也是能够有着一些异常,而且他,也是不能将其他人给你的灵魂,所以,这些事,我也是不可能将这一个人的强者给吞天蟒,这般一次,我们的实力,便是能够将之击杀……” “这里的人,也是能够与魂殿强者抗衡。” 萧炎眼眸中也是掠过一抹惊骇,旋即一笑,旋即一声冷喝,身后那些魂殿殿主便是对于萧炎,一道冷喝的身体,在天空之上暴射而出,一股恐怖的劲气,便是从天空倾洒而下。 “嗤!”</code></pre> <p>还是挺好玩的吧,另外还尝试了生成日文等等。</p> <h2>七、学习完整版的LSTMCell</h2> <p>上面只说了基础版的BasicRNNCell和BasicLSTMCell。TensorFlow中还有一个“完全体”的LSTM:LSTMCell。这个完整版的LSTM可以定义peephole,添加输出的投影层,以及给LSTM的遗忘单元设置bias等,可以 <a href="/misc/goto?guid=4959751125901883139" rel="nofollow,noindex"> 参考其源码 </a> 了解使用方法。</p> <h2>八、学习最新的Seq2Seq API</h2> <p>Google在TensorFlow的1.2版本(1.3.0的rc版已经出了,貌似正式版也要出了,更新真是快)中更新了Seq2Seq API,使用这个API我们可以不用手动地去定义Seq2Seq模型中的Encoder和Decoder。此外它还和1.2版本中的新数据读入方式Datasets兼容。可以 <a href="/misc/goto?guid=4959751125981205721" rel="nofollow,noindex"> 阅读此处的文档 </a> 学习它的使用方法。</p> <h2>九、总结</h2> <p>最后简单地总结一下,这篇文章提供了一个学习TensorFlow RNN实现的详细路径,其中包括了学习顺序、可能会踩的坑、源码分析以及一个示例项目 <a href="/misc/goto?guid=4959751125386426432" rel="nofollow,noindex"> hzy46/Char-RNN-TensorFlow </a> ,希望能对大家有所帮助。</p> <p> </p> <p>来自:https://zhuanlan.zhihu.com/p/28196873</p> <p> </p>