学习笔记:使用 OpenCV 识别 QRCode
DouglasMudi
8年前
<p>识别二维码的项目数不胜数,每次都是开箱即用,方便得很。</p> <p>这次想用 OpenCV 从零识别二维码,主要是温习一下图像处理方面的基础概念,熟悉 OpenCV 的常见操作,以及了解二维码识别和编码的基本原理。</p> <p>作者本人在图像处理方面还是一名新手,采用的方法大多原始粗暴,如果有更好的解决方案欢迎指教。</p> <h2>QRCode</h2> <p>二维码有很多种,这里我选择的是比较常见的 QRCode 作为探索对象。QRCode 全名是 Quick Response Code,是一种可以快速识别的二维码。</p> <h3>尺寸</h3> <p>QRCode 有不同的 Version ,不同的 Version 对应着不同的尺寸。将最小单位的黑白块称为 module ,则 QRCode 尺寸的公式如下:</p> <p>Version V = ((V-1)*4 + 21) ^ 2 modules</p> <p>常见的 QRCode 一共有40种尺寸:</p> <ul> <li>Version 1 : 21 * 21 modules</li> <li>Version 2 : 25 * 25 modules</li> <li>…</li> <li>Version 40: 177 * 177 modules</li> </ul> <h3>分类</h3> <p>QRCode 分为 Model 1、Model 2、Micro QR 三类:</p> <ul> <li>Model 1 :是 Model 2 和 Micro QR 的原型,有 Version 1 到 Version 14 共14种尺寸。</li> <li>Model 2 :是 Model 1 的改良版本,添加了对齐标记,有 Version 1 到 Version 40 共40种尺寸。</li> <li>Micro QR :只有一个定位标记,最小尺寸是 11*11 modules 。</li> </ul> <h3>组成</h3> <p><img src="https://simg.open-open.com/show/f27ef36f5edf9f975f2bb41d2d1e42ff.jpg"></p> <p>QRCode 主要由以下部分组成:</p> <ul> <li>1 - Position Detection Pattern:位于三个角落,可以快速检测二维码位置。</li> <li>2 - Separators:一个单位宽的分割线,提高二维码位置检测的效率。</li> <li>3 - Timing Pattern:黑白相间,用于修正坐标系。</li> <li>4 - Alignment Patterns:提高二维码在失真情况下的识别率。</li> <li>5 - Format Information:格式信息,包含了错误修正级别和掩码图案。</li> <li>6 - Data:真正的数据部分。</li> <li>7 - Error Correction:用于错误修正,和 Data 部分格式相同。</li> </ul> <p>具体的生成原理和识别细节可以阅读文末的参考文献,比如耗子叔的这篇《 <a href="http://www.open-open.com/lib/view/open1383022297577.html">二维码的生成细节和原理</a> 》。</p> <p>由于二维码的解码步骤比较复杂,而本次学习重点是数字图像处理相关的内容,所以本文主要是解决二维码的识别定位问题,数据解码的工作交给第三方库(比如 <a href="/misc/goto?guid=4959673933571287971" rel="nofollow,noindex">ZBAR</a> )完成。</p> <h2>OpenCV</h2> <p>在开始识别二维码之前,还需要补补课,了解一些图像处理相关的基本概念。</p> <h3>contours</h3> <p>轮廓(contour)可以简单理解为一段连续的像素点。比如一个长方形的边,比如一条线,比如一个点,都属于轮廓。而轮廓之间有一定的层级关系,以下图为例:</p> <p><img src="https://simg.open-open.com/show/7304f2d33a4d4cb437d94b69980f9342.jpg"></p> <p>主要说明以下概念:</p> <ul> <li>external & internal:对于最大的包围盒而言,2 是外部轮廓(external),2a 是内部轮廓(internal)。</li> <li>parent & child:2 是 2a 的父轮廓(parent),2a 是 2 的子轮廓(child),3 是 2a 的子轮廓,同理,3a 是 3 的子轮廓,4 和 5 都是 3a 的子轮廓。</li> <li>external | outermost:0、1、2 都属于最外围轮廓(outermost)。</li> <li>hierarchy level:0、1、2 是同一层级(same hierarchy),都属于 hierarchy-0 ,它们的第一层子轮廓属于 hierarchy-1 。</li> <li>first child:4 是 3a 的第一个子轮廓(first child)。实际上 5 也可以,这个看个人喜好了。</li> </ul> <p>在 OpenCV 中,通过一个数组表达轮廓的层级关系:</p> <p>[Next, Previous, First_Child, Parent]</p> <ul> <li>Next:同一层级的下一个轮廓。在上图中, 0 的 Next 就是 1 ,1 的 Next 就是 2 ,2 的 Next 是 -1 ,表示没有下一个同级轮廓。</li> <li>Previous:同一层级的上一个轮廓。比如 5 的 Previous 是 4, 1 的 Previous 就是 0 ,0 的 Previous 是 -1 。</li> <li>First_Child:第一个子轮廓,比如 2 的 First_Child 就是 2a ,像 3a 这种有两个 Child ,只取第一个,比如选择 4 作为 First_Child 。</li> <li>Parent:父轮廓,比如 4 和 5 的 Parent 都是 3a ,3a 的 Parent 是 3 。</li> </ul> <p>关于轮廓层级的问题,参考阅读:《 <a href="/misc/goto?guid=4959673933661569098" rel="nofollow,noindex">Tutorial: Contours Hierarchy</a> 》</p> <p>findContours</p> <p>了解了 contour 相关的基础概念之后,接下来就是在 OpenCV 里的具体代码了。</p> <p>findContours 是寻找轮廓的函数,函数定义如下:</p> <p>cv2.findContours(image, mode, method) → image, contours, hierarchy</p> <p>其中:</p> <ul> <li>image:资源图片,8 bit 单通道,一般需要将普通的 BGR 图片通过 cvtColor 函数转换。</li> <li>mode:边缘检测的模式,包括: <ul> <li>CV_RETR_EXTERNAL:只检索最大的外部轮廓(extreme outer),没有层级关系,只取根节点的轮廓。</li> <li>CV_RETR_LIST:检索所有轮廓,但是没有 Parent 和 Child 的层级关系,所有轮廓都是同级的。</li> <li>CV_RETR_CCOMP:检索所有轮廓,并且按照二级结构组织:外轮廓和内轮廓。以前面的大图为例,0、1、2、3、4、5 都属于第0层,2a 和 3a 都属于第1层。</li> <li>CV_RETR_TREE:检索所有轮廓,并且按照嵌套关系组织层级。以前面的大图为例,0、1、2 属于第0层,2a 属于第1层,3 属于第2层,3a 属于第3层,4、5 属于第4层。</li> </ul> </li> <li>method:边缘近似的方法,包括: <ul> <li>CV_CHAIN_APPROX_NONE:严格存储所有边缘点,即:序列中任意两个点的距离均为1。</li> <li>CV_CHAIN_APPROX_SIMPLE:压缩边缘,通过顶点绘制轮廓。</li> </ul> </li> </ul> <p>drawContours</p> <p>drawContours 是绘制边缘的函数,可以传入 findContours 函数返回的轮廓结果,在目标图像上绘制轮廓。函数定义如下:</p> <p>Python: cv2.drawContours(image, contours, contourIdx, color) → image</p> <p>其中:</p> <ul> <li>image:目标图像,直接修改目标的像素点,实现绘制。</li> <li>contours:需要绘制的边缘数组。</li> <li>contourIdx:需要绘制的边缘索引,如果全部绘制则为 -1。</li> <li>color:绘制的颜色,为 BGR 格式的 Scalar 。</li> <li>thickness:可选,绘制的密度,即描绘轮廓时所用的画笔粗细。</li> <li>lineType: 可选,连线类型,分为以下几种: <ul> <li>LINE_4:4-connected line,只有相邻的点可以连接成线,一个点有四个相邻的坑位。</li> <li>LINE_8:8-connected line,相邻的点或者斜对角相邻的点可以连接成线,一个点有四个相邻的坑位和四个斜对角相邻的坑位,所以一共有8个坑位。</li> <li>LINE_AA:antialiased line,抗锯齿连线。</li> </ul> </li> <li>hierarchy:可选,如果需要绘制某些层级的轮廓时作为层级关系传入。</li> <li>maxLevel:可选,需要绘制的层级中的最大级别。如果为1,则只绘制最外层轮廓,如果为2,绘制最外层和第二层轮廓,以此类推。</li> </ul> <h3>moments</h3> <p>矩(moment)起源于物理学的力矩,最早由阿基米德提出,后来发展到统计学,再后来到数学进行归纳。本质上来讲,物理学和统计学的矩都是数学上矩的特例。</p> <p>物理学中的矩表示作用力促使物体绕着支点旋转的趋向,通俗理解就像是拧螺丝时用的扭转的力,由矢量和作用力组成。</p> <p>数学中的矩用来描述数据分布特征的一类数字特征,例如:算术平均数、方差、标准差、平均差,这些值都是矩。在实数域上的实函数 f(x) 相对于值 c 的 n 阶矩为:</p> <p><img src="https://simg.open-open.com/show/607e56a34efece0faefd04df7ba9fd8f.png"></p> <p>常用的矩有两类:</p> <ul> <li>原点矩(raw moment):相对原点的矩,即当 c 为 0 的时候。1阶原点矩为期望,也成为中心。</li> <li>中心矩(central moment):相对于中心点的矩,即当 c 为 E(x) 的时候。1阶中心矩为0,2阶中心矩为方差。</li> </ul> <p>到了图像处理领域,对于灰度图(单通道,每个像素点由一个数值来表示)而言,把坐标看成二维变量 (X, Y),那么图像可以用二维灰度密度函数 I(x, y) 来表示。</p> <p>简单来讲,图像的矩就是图像的像素相对于某个点的分布情况统计,是图像的一种特征描述。</p> <p>raw moment</p> <p>图像的原点矩(raw moment)是相对于原点的矩,公式为:</p> <p><img src="https://simg.open-open.com/show/7ee4e77c18342fad938c51b625b25f7f.png"></p> <p>对于图像的原点矩而言:</p> <ul> <li>M <sub>00</sub> 相当于权重系数为 1 。将所有 I(x, y) 相加,对于二值图像而言,相当于将每个点记为 1 然后求和,也就是图像的面积;对于灰度图像而言,则是图像的灰度值的和。</li> <li>M <sub>10</sub> 相当于权重为 x 。对二值图像而言,相当于将所有的 x 坐标相加。</li> <li>M <sub>01</sub> 相当于权重为 y 。对二值图像而言,相当于将所有的 y 坐标相加。</li> <li>图像的几何中心(centroid)等于 (M <sub>10</sub> / M <sub>00</sub> , M <sub>01</sub> / M <sub>00</sub> )。</li> </ul> <p>central moment</p> <p>图像的中心矩(central moment)是相对于几何中心的矩,公式为:</p> <p><img src="https://simg.open-open.com/show/596c45ac3ebd96e729e74a061c12ea9a.png"></p> <p>可以看到,中心矩表现的是图像相对于几何中心的分布情况。一个通用的描述中心矩和原点矩关系的公式是:</p> <p><img src="https://simg.open-open.com/show/561dde34b5e5a66619465089515a86f0.png"></p> <p>中心矩在图像处理中的一个应用便是寻找不变矩(invariant moments),这是一个高度浓缩的图像特征。</p> <p>所谓的不变性有三种,分别对应图像处理中的三种仿射变换:</p> <ul> <li>平移不变性(translation invariants):中心矩本身就具有平移不变性,因为它是相对于自身的中心的分布统计,相当于是采用了相对坐标系,而平移改变的是整体坐标。</li> <li>缩放不变性(scale invariants):为了实现缩放不变性,可以构造一个规格化的中心矩,即将中心矩除以 (1+(i+j)/2) 阶的0阶中心矩,具体公式见 《 <a href="/misc/goto?guid=4959673933752928082" rel="nofollow,noindex">Wiki: scale invariants</a> 》。</li> <li>旋转不变性(rotation invariants):通过2阶和3阶的规格化中心矩可以构建7个不变矩组,构成的特征量具有旋转不变性。具体可以看 《 <a href="/misc/goto?guid=4959673933836047764" rel="nofollow,noindex">Wiki: rotation invariants</a> 》。</li> </ul> <p>Hu moment 和 Zernike moment 之类的内容就不继续展开了,感兴趣的可以翻阅相关文章。</p> <h2>OpenCV + QRCode</h2> <p>接下来就是将 QRCode 和 OpenCV 结合起来的具体使用了。</p> <p>初步构想的识别步骤如下:</p> <ul> <li>加载图像,并且进行一些预处理,比如通过高斯模糊去噪。</li> <li>通过 Canny 边缘检测算法,找出图像中的边缘</li> <li>寻找边缘中的轮廓,将嵌套层数大于 4 的边缘找出,得到 Position Detection Pattern 。</li> <li>如果上一步得到的结果不为 3 ,则通过 Timing Pattern 去除错误答案。</li> <li>计算定位标记的最小矩形包围盒,获得三个最外围顶点,算出第四个顶点,从而确定二维码的区域。</li> <li>计算定位标记的几何中心,连线组成三角形,从而修正坐标,得到仿射变换前的 QRCode 。</li> </ul> <p>在接下来的内容里,将会尝试用 OpenCV 识别下图中的二维码:</p> <p><img src="https://simg.open-open.com/show/52cc744323272bdce2ed86b025d23c19.jpg"></p> <h3>加载图像</h3> <p>首先加载图像,并通过 matplotlib 显示图像查看效果:</p> <pre> <code class="language-python">%matplotlib inline import cv2 from matplotlib import pyplot as plt import numpy as np def show(img, code=cv2.COLOR_BGR2RGB): cv_rgb = cv2.cvtColor(img, code) fig, ax = plt.subplots(figsize=(16, 10)) ax.imshow(cv_rgb) fig.show() img = cv2.imread('1.jpg') show(img) </code></pre> <p>OpenCV 中默认是 BGR 通道,通过 cvtColor 函数将原图转换成灰度图:</p> <pre> <code class="language-python">img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) </code></pre> <h3>边缘检测</h3> <p>有了灰度图之后,接下来用 Canny 边缘检测算法检测边缘。</p> <p>Canny 边缘检测算法主要是以下几个步骤:</p> <ul> <li>用高斯滤波器平滑图像去除噪声干扰(低通滤波器消除高频噪声)。</li> <li>生成每个点的亮度梯度图(intensity gradients),以及亮度梯度的方向。</li> <li>通过非极大值抑制(non-maximum suppression)缩小边缘宽度。非极大值抑制的意思是,只保留梯度方向上的极大值,删除其他非极大值,从而实现锐化的效果。</li> <li>通过双阈值法(double threshold)寻找潜在边缘。大于高阈值为强边缘(strong edge),保留;小于低阈值则删除;不大不小的为弱边缘(weak edge),待定。</li> <li>通过迟滞现象(Hysteresis)处理待定边缘。弱边缘有可能是边缘,也可能是噪音,判断标准是:如果一个弱边缘点附近的八个相邻点中,存在一个强边缘,则此弱边缘为强边缘,否则排除。</li> </ul> <p>在 OpenCV 中可以直接使用 Canny 函数,不过在那之前要先用 GaussianBlur 函数进行高斯模糊:</p> <pre> <code class="language-python">img_gb = cv2.GaussianBlur(img_gray, (5, 5), 0) </code></pre> <p>接下来使用 Canny 函数检测边缘,选择 100 和 200 作为高低阈值:</p> <pre> <code class="language-python">edges = cv2.Canny(img_gray, 100 , 200) </code></pre> <p>执行结果如下:</p> <p><img src="https://simg.open-open.com/show/b9d2745688a8c40daa37041db5d1be34.jpg"></p> <p>可以看到图像中的很多噪音都被处理掉了,只剩下了边缘部分。</p> <h3>寻找定位标记</h3> <p>有了边缘之后,接下来就是通过轮廓定位图像中的二维码。二维码的 Position Detection Pattern 在寻找轮廓之后,应该是有6层(因为一条边缘会被识别出两个轮廓,外轮廓和内轮廓):</p> <p><img src="https://simg.open-open.com/show/c372156eaead4f2cd261c45863057bdc.jpg"></p> <p>所以,如果简单处理的话,只要遍历图像的层级关系,然后嵌套层数大于等于5的取出来就可以了:</p> <pre> <code class="language-python">img_fc, contours, hierarchy = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) hierarchy = hierarchy[0] found = [] for i in range(len(contours)): k = i c = 0 while hierarchy[k][2] != -1: k = hierarchy[k][2] c = c + 1 if c >= 5: found.append(i) for i in found: img_dc = img.copy() cv2.drawContours(img_dc, contours, i, (0, 255, 0), 3) show(img_dc) </code></pre> <p>绘制结果如下:</p> <p><img src="https://simg.open-open.com/show/21434cad3353cedd22f7cd5c3bc357c6.jpg"> <img src="https://simg.open-open.com/show/ed2345cb12603155f35663489c542de3.jpg"> <img src="https://simg.open-open.com/show/48cb7dfcb5d543a052deeef68fb13246.jpg"> <img src="https://simg.open-open.com/show/d8066fceabef27fb5a59b2990e890dc1.jpg"></p> <h3>定位筛选</h3> <p>接下来就是把所有找到的定位标记进行筛选。如果刚好找到三个那就可以直接跳过这一步了。然而,因为这张图比较特殊,找出了四个定位标记,所以需要排除一个错误答案。</p> <p>讲真,如果只靠三个 Position Detection Pattern 组成的直角三角形,是没办法从这四个当中排除错误答案的。因为,一方面会有形变的影响,比如斜躺着的二维码,本身三个顶点连线就不是直角三角形;另一方面,极端情况下,多余的那个标记如果位置比较凑巧的话,完全和正确结果一模一样,比如下面这种情况:</p> <p><img src="https://simg.open-open.com/show/52b54d8109ee294c61fac83b0fb90878.jpg"></p> <p>所以我们需要 Timing Pattern 的帮助,也就是定位标记之间的黑白相间的那两条黑白相间的线。解决思路大致如下:</p> <ul> <li>将4个定位标记两两配对</li> <li>将他们的4个顶点两两连线,选出最短的那两根</li> <li>如果两根线都不符合 Timing Pattern 的特征,则出局</li> </ul> <p>寻找定位标记的顶点</p> <p>找的的定位标记是一个轮廓结果,由许多像素点组成。如果想找到定位标记的顶点,则需要找到定位标记的矩形包围盒。先通过 minAreaRect 函数将检查到的轮廓转换成最小矩形包围盒,并且绘制出来:</p> <pre> <code class="language-python">draw_img = img.copy() for i in found: rect = cv2.minAreaRect(contours[i]) box = cv2.boxPoints(rect) box = np.int0(box) cv2.drawContours(draw_img,[box], 0, (0,0,255), 2) show(draw_img) </code></pre> <p>绘制如下:</p> <p><img src="https://simg.open-open.com/show/a4080f2d0f7f40321280da4fc5901ded.jpg"></p> <p>这个矩形包围盒的四个坐标点就是顶点,将它存储在 boxes 中:</p> <pre> <code class="language-python">boxes = [] for i in found: rect = cv2.minAreaRect(contours[i]) box = cv2.boxPoints(rect) box = np.int0(box) box = map(tuple, box) boxes.append(box) </code></pre> <p>定位标记的顶点连线</p> <p>接下来先遍历所有顶点连线,然后从中选择最短的两根,并将它们绘制出来:</p> <pre> <code class="language-python">def cv_distance(P, Q): return int(math.sqrt(pow((P[0] - Q[0]), 2) + pow((P[1] - Q[1]),2))) def check(a, b): # 存储 ab 数组里最短的两点的组合 s1_ab = () s2_ab = () # 存储 ab 数组里最短的两点的距离,用于比较 s1 = np.iinfo('i').max s2 = s1 for ai in a: for bi in b: d = cv_distance(ai, bi) if d < s2: if d < s1: s1_ab, s2_ab = (ai, bi), s1_ab s1, s2 = d, s1 else: s2_ab = (ai, bi) s2 = d a1, a2 = s1_ab[0], s2_ab[0] b1, b2 = s1_ab[1], s2_ab[1] # 将最短的两个线画出来 cv2.line(draw_img, a1, b1, (0,0,255), 3) cv2.line(draw_img, a2, b2, (0,0,255), 3) for i in range(len(boxes)): for j in range(i+1, len(boxes)): check(boxes[i], boxes[j]) show(draw_img) </code></pre> <p>绘制结果如下:</p> <p><img src="https://simg.open-open.com/show/816a228c59b091d49d265472de90bc99.jpg"></p> <p>获取连线上的像素值</p> <p>有了端点连线,接下来需要获取连线上的像素值,以便后面判断是否是 Timing Pattern 。</p> <p>在这之前,为了更方便的判断黑白相间的情况,先对图像进行二值化:</p> <pre> <code class="language-python">th, bi_img = cv2.threshold(img_gray, 100, 255, cv2.THRESH_BINARY) </code></pre> <p>接下来是获取连线像素值。由于 OpenCV3 的 Python 库中没有 LineIterator ,只好自己写一个。在《 <a href="/misc/goto?guid=4959673933922268809" rel="nofollow,noindex">OpenCV 3.0 Python LineIterator</a> 》这个问答里找到了可用的直线遍历函数,可以直接使用。</p> <p>以一条 Timing Pattern 为例:</p> <p><img src="https://simg.open-open.com/show/1277757bf3241a8486d28958c4c59121.jpg"></p> <p>打印其像素点看下结果:</p> <pre> <code class="language-python">[ 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 255. 255. 255. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 0. 0. 0. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 0. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255.] </code></pre> <p>修正端点位置</p> <p>照理说, Timing Pattern 的连线,像素值应该是黑白均匀相间才对,为什么是上面的这种一连一大片的结果呢?</p> <p>仔细看下截图可以发现,由于取的是定位标记的外部包围盒的顶点,所以因为误差会超出定位标记的范围,导致没能正确定位到 Timing Pattern ,而是相邻的 Data 部分的像素点。</p> <p>为了修正这部分误差,我们可以对端点坐标进行调整。因为 Position Detection Pattern 的大小是固定的,是一个 1-1-3-1-1 的黑白黑白黑相间的正方形,识别 Timing Pattern 的最佳端点应该是最靠里的黑色区域的中心位置,也就是图中的绿色虚线部分:</p> <p><img src="https://simg.open-open.com/show/0bbcb72391d1324efdfbf30392a80fee.jpg"></p> <p>所以我们需要对端点坐标进行调整。调整方式是,将一个端点的 x 和 y 值向另一个端点的 x 和 y 值靠近 1/14 个单位距离,代码如下:</p> <pre> <code class="language-python">a1 = (a1[0] + (a2[0]-a1[0])*1/14, a1[1] + (a2[1]-a1[1])*1/14) b1 = (b1[0] + (b2[0]-b1[0])*1/14, b1[1] + (b2[1]-b1[1])*1/14) a2 = (a2[0] + (a1[0]-a2[0])*1/14, a2[1] + (a1[1]-a2[1])*1/14) b2 = (b2[0] + (b1[0]-b2[0])*1/14, b2[1] + (b1[1]-b2[1])*1/14) </code></pre> <p>调整之后的像素值就是正确的 Timing Pattern 了:</p> <pre> <code class="language-python">[ 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255. 255.] </code></pre> <p>验证是否是 Timing Pattern</p> <p>像素序列拿到了,接下来就是判断它是否是 Timing Pattern 了。 Timing Pattern 的特征是黑白均匀相间,所以每段同色区域的计数结果应该相同,而且旋转拉伸平移都不会影响这个特征。</p> <p>于是,验证方案是:</p> <ul> <li>先除去数组中开头和结尾处连续的白色像素点。</li> <li>对数组中的元素进行计数,相邻的元素如果值相同则合并到计数结果中。比如 [0,1,1,1,0,0] 的计数结果就是 [1,3,2] 。</li> <li>计数数组的长度如果小于 5 ,则不是 Timing Pattern 。</li> <li>计算计数数组的方差,看看分布是否离散,如果方差大于阈值,则不是 Timing Pattern 。</li> </ul> <p>代码如下:</p> <pre> <code class="language-python">def isTimingPattern(line): # 除去开头结尾的白色像素点 while line[0] != 0: line = line[1:] while line[-1] != 0: line = line[:-1] # 计数连续的黑白像素点 c = [] count = 1 l = line[0] for p in line[1:]: if p == l: count = count + 1 else: c.append(count) count = 1 l = p c.append(count) # 如果黑白间隔太少,直接排除 if len(c) < 5: return False # 计算方差,根据离散程度判断是否是 Timing Pattern threshold = 5 return np.var(c) < threshold </code></pre> <p>对前面的那条连线检测一下,计数数组为:</p> <pre> <code class="language-python">[11, 12, 11, 12, 11, 12, 11, 13, 11] </code></pre> <p>方差为 0.47 。其他非 Timing Pattern 的连线方差均大于 10 。</p> <p>找出错误的定位标记</p> <p>接下来就是利用前面的结果除去错误的定位标记了,只要两个定位标记的端点连线中能找到 Timing Pattern ,则这两个定位标记有效,把它们存进 set 里:</p> <pre> <code class="language-python">valid = set() for i in range(len(boxes)): for j in range(i+1, len(boxes)): if check(boxes[i], boxes[j]): valid.add(i) valid.add(j) print valid </code></pre> <p>结果是:</p> <pre> <code class="language-python">set([1, 2, 3]) </code></pre> <p>好了,它们中出了一个叛徒,0、1、2、3 四个定位标记,0是无效的,1、2、3 才是需要识别的 QRCode 的定位标记。</p> <h3>找出二维码</h3> <p>有了定位标记之后,找出二维码就轻而易举了。只要找出三个定位标记轮廓的最小矩形包围盒,那就是二维码的位置了:</p> <pre> <code class="language-python">contour_all = np.array([]) while len(valid) > 0: c = found[valid.pop()] for sublist in c: for p in sublist: contour_all.append(p) rect = cv2.minAreaRect(contour_ALL) box = cv2.boxPoints(rect) box = np.array(box) draw_img = img.copy() cv2.polylines(draw_img, np.int32([box]), True, (0, 0, 255), 10) show(draw_img) </code></pre> <p>绘制结果如下:</p> <p><img src="https://simg.open-open.com/show/2c01bb7f7789541c7470e00ce4a121b9.jpg"></p> <h2>小结</h2> <p>后面仿射变换后坐标修正的问题实在是写不动了,这篇就先到这里吧。</p> <p>回头看看,是不是感觉绕了个大圈子?</p> <p>『费了半天劲,只是为了告诉我第0个定位标记是无效的,我看图也看出来了啊!』</p> <p>是的,不过代码里能看到的只是像素值和它们的坐标,为了排除这个错误答案确实花了不少功夫。</p> <p>不过这也是我喜欢做数字图像处理的原因之一:可用函数数不胜数,专业概念层出不穷,同样的一个问题,不同的人去解决,就有着不同的答案,交流的过程便是学习的过程。</p> <p>啊对了,如果有更好的解决方案,欢迎在评论里指出!</p> <p>以及,文章里有一个红包彩蛋,你找到了吗 =。=</p> <p>财富!名誉!地位!穷得叮当响的海贼汪,哥尔·D·汪海,他在临睡前的一句话让人们趋之若鹜奔向博客:『想要我的红包吗?想要的话可以全部给你,去找吧!我把所有红包都放在那里!』</p> <p>参考文献:</p> <ul> <li><a href="http://www.open-open.com/lib/view/open1383022297577.html" rel="nofollow,noindex">二维码的生成细节和原理</a></li> <li><a href="/misc/goto?guid=4959673934019536042" rel="nofollow,noindex">What is a QR code?</a></li> <li><a href="/misc/goto?guid=4959673934100403493" rel="nofollow,noindex">ISO/IEC 18004: QRCode Standard</a></li> <li><a href="/misc/goto?guid=4959673934180224889" rel="nofollow,noindex">What Are The Different Sections In A QR Code?</a></li> <li><a href="/misc/goto?guid=4959673934270925063" rel="nofollow,noindex">Decoding small QR codes by hand</a></li> <li><a href="/misc/goto?guid=4959673934363288626" rel="nofollow,noindex">How data matrix codes work</a></li> <li><a href="/misc/goto?guid=4959673934443934598" rel="nofollow,noindex">QR Code Tutorial</a></li> <li><a href="/misc/goto?guid=4959673934526054433" rel="nofollow,noindex">How to Read QR Symbols Without Your Mobile Telephone</a></li> <li><a href="/misc/goto?guid=4959673934612499550" rel="nofollow,noindex">OpenCV: QRCode detection and extraction</a></li> <li><a href="/misc/goto?guid=4959673933661569098" rel="nofollow,noindex">Tutorial Python: Contours Hierarchy</a></li> <li><a href="/misc/goto?guid=4959673934705044573" rel="nofollow,noindex">Wiki: Pixel Connectivity</a></li> <li><a href="/misc/goto?guid=4959673934783717540" rel="nofollow,noindex">Image Processing: Connect</a></li> <li><a href="/misc/goto?guid=4959673934874810565" rel="nofollow,noindex">Wiki: Image Moment</a></li> <li><a href="/misc/goto?guid=4959673934947108649" rel="nofollow,noindex">Wiki: Moment (Mathematics)</a> )</li> <li><a href="/misc/goto?guid=4959673935027777185" rel="nofollow,noindex">图像的矩特征</a></li> <li><a href="/misc/goto?guid=4959673935117078824" rel="nofollow,noindex">统计数据的形态特征</a></li> <li><a href="/misc/goto?guid=4959673935193986740" rel="nofollow,noindex">图像的矩(Image Moments)</a></li> <li><a href="/misc/goto?guid=4959673935272402337" rel="nofollow,noindex">OpenCV Doc: Structural analysis and shape descriptors</a></li> <li><a href="/misc/goto?guid=4959673935359230702" rel="nofollow,noindex">CS7960 AdvImProc MomentInvariants</a></li> <li><a href="/misc/goto?guid=4959673935429252166" rel="nofollow,noindex">OpenCV Doc: Canny</a></li> <li><a href="/misc/goto?guid=4959673935537501169" rel="nofollow,noindex">Wiki: Canny Edge Detector</a></li> <li><a href="/misc/goto?guid=4959673935621772813" rel="nofollow,noindex">Wiki: Hysteresis</a></li> <li><a href="/misc/goto?guid=4959673933922268809" rel="nofollow,noindex">OpenCV 3.0 Python LineIterator</a></li> </ul> <p> </p> <p>来自: <a href="/misc/goto?guid=4959673935713521645" rel="nofollow">http://blog.callmewhy.com/2016/04/23/opencv-find-qrcode-position/</a></p> <p> </p>