使用canopy生成和k-means聚类对新闻进行聚类
htae2565
9年前
来自: http://blog.csdn.net/u012965373/article/details/50754420
/**** * @author YangXin * @info 使用canopy生成和k-means聚类对新闻进行聚类 */ package unitNine; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.SequenceFile; import org.apache.hadoop.io.Text; import org.apache.lucene.analysis.Analyzer; import org.apache.mahout.common.HadoopUtil; import org.apache.mahout.math.VectorWritable; import org.apache.mahout.vectorizer.DictionaryVectorizer; import org.apache.mahout.vectorizer.DocumentProcessor; import org.apache.mahout.vectorizer.tfidf.TFIDFConverter; public class ReutersToSparseVectors { public static void main(String args[]) throws Exception { int minSupport = 5; int minDf = 5; int maxDFPercent = 95; int maxNGramSize = 1; float minLLRValue = 50; int reduceTasks = 1; int chunkSize = 200; int norm = 2; boolean sequentialAccessOutput = true; String inputDir = "inputDir"; Configuration conf = new Configuration(); FileSystem fs = FileSystem.get(conf); String outputDir = "reuters"; HadoopUtil.delete(conf, new Path(outputDir)); Path tokenizedPath = new Path(outputDir, DocumentProcessor.TOKENIZED_DOCUMENT_OUTPUT_FOLDER); MyAnalyzer analyzer = new MyAnalyzer(); DocumentProcessor.tokenizeDocuments(new Path(inputDir), analyzer.getClass() .asSubclass(Analyzer.class), tokenizedPath, conf); DictionaryVectorizer.createTermFrequencyVectors(tokenizedPath, new Path(outputDir), conf, minSupport, maxNGramSize, minLLRValue, 2, true, reduceTasks, chunkSize, sequentialAccessOutput, false); TFIDFConverter.processTfIdf( new Path(outputDir , DictionaryVectorizer.DOCUMENT_VECTOR_OUTPUT_FOLDER), new Path(outputDir), conf, chunkSize, minDf, maxDFPercent, norm, true, sequentialAccessOutput, false, reduceTasks); String vectorsFolder = outputDir + "/tfidf-vectors"; SequenceFile.Reader reader = new SequenceFile.Reader(fs, new Path(vectorsFolder, "part-r-00000"), conf); Text key = new Text(); VectorWritable value = new VectorWritable(); while (reader.next(key, value)) { System.out.println(key.toString() + " = > " + value.get().asFormatString()); } reader.close(); } }