[Android]-图片JNI(C++\Java)高斯模糊的实现与比较
转自:http://blog.csdn.net/qiujuer/article/details/24282047
前几天一直在弄android上的图片模糊效果的实现!
一直找不到方法,看别人说都是调用JNI,但是JNI这个东西我还真不熟悉啊!
只好从零开始了!这里不讲JNI的平台搭建,只讲JNI的关键代码,具体的项目我会共享出来给大家!
对于JNI下使用C++来模糊图片这个我真的没找到,只好自己写C++的来实现了。
在国外的一个项目中找到了一个”堆栈模糊效果“,原型如下:
// Stack Blur v1.0 // // Author: Mario Klingemann <mario@quasimondo.com> // http://incubator.quasimondo.com // created Feburary 29, 2004 // This is a compromise between Gaussian Blur and Box blur // It creates much better looking blurs than Box Blur, but is // 7x faster than my Gaussian Blur implementation. // // I called it Stack Blur because this describes best how this // filter works internally: it creates a kind of moving stack // of colors whilst scanning through the image. Thereby it // just has to add one new block of color to the right side // of the stack and remove the leftmost color. The remaining // colors on the topmost layer of the stack are either added on // or reduced by one, depending on if they are on the right or // on the left side of the stack. // // If you are using this algorithm in your code please add // the following line: // // Stack Blur Algorithm by Mario Klingemann <mario@quasimondo.com> PImage a; PImage b; void setup() { a=loadImage("dog.jpg"); size(a.width, a.height); b=new PImage(a.width, a.height); fill(255); noStroke(); frameRate(25); } void draw() { System.arraycopy(a.pixels,0,b.pixels,0,a.pixels.length); fastblur(b,mouseY/4); image(b, 0, 0); } void fastblur(PImage img,int radius){ if (radius<1){ return; } int[] pix=img.pixels; int w=img.width; int h=img.height; int wm=w-1; int hm=h-1; int wh=w*h; int div=radius+radius+1; int r[]=new int[wh]; int g[]=new int[wh]; int b[]=new int[wh]; int rsum,gsum,bsum,x,y,i,p,yp,yi,yw; int vmin[] = new int[max(w,h)]; int divsum=(div+1)>>1; divsum*=divsum; int dv[]=new int[256*divsum]; for (i=0;i<256*divsum;i++){ dv[i]=(i/divsum); } yw=yi=0; int[][] stack=new int[div][3]; int stackpointer; int stackstart; int[] sir; int rbs; int r1=radius+1; int routsum,goutsum,boutsum; int rinsum,ginsum,binsum; for (y=0;y<h;y++){ rinsum=ginsum=binsum=routsum=goutsum=boutsum=rsum=gsum=bsum=0; for(i=-radius;i<=radius;i++){ p=pix[yi+min(wm,max(i,0))]; sir=stack[i+radius]; sir[0]=(p & 0xff0000)>>16; sir[1]=(p & 0x00ff00)>>8; sir[2]=(p & 0x0000ff); rbs=r1-abs(i); rsum+=sir[0]*rbs; gsum+=sir[1]*rbs; bsum+=sir[2]*rbs; if (i>0){ rinsum+=sir[0]; ginsum+=sir[1]; binsum+=sir[2]; } else { routsum+=sir[0]; goutsum+=sir[1]; boutsum+=sir[2]; } } stackpointer=radius; for (x=0;x<w;x++){ r[yi]=dv[rsum]; g[yi]=dv[gsum]; b[yi]=dv[bsum]; rsum-=routsum; gsum-=goutsum; bsum-=boutsum; stackstart=stackpointer-radius+div; sir=stack[stackstart%div]; routsum-=sir[0]; goutsum-=sir[1]; boutsum-=sir[2]; if(y==0){ vmin[x]=min(x+radius+1,wm); } p=pix[yw+vmin[x]]; sir[0]=(p & 0xff0000)>>16; sir[1]=(p & 0x00ff00)>>8; sir[2]=(p & 0x0000ff); rinsum+=sir[0]; ginsum+=sir[1]; binsum+=sir[2]; rsum+=rinsum; gsum+=ginsum; bsum+=binsum; stackpointer=(stackpointer+1)%div; sir=stack[(stackpointer)%div]; routsum+=sir[0]; goutsum+=sir[1]; boutsum+=sir[2]; rinsum-=sir[0]; ginsum-=sir[1]; binsum-=sir[2]; yi++; } yw+=w; } for (x=0;x<w;x++){ rinsum=ginsum=binsum=routsum=goutsum=boutsum=rsum=gsum=bsum=0; yp=-radius*w; for(i=-radius;i<=radius;i++){ yi=max(0,yp)+x; sir=stack[i+radius]; sir[0]=r[yi]; sir[1]=g[yi]; sir[2]=b[yi]; rbs=r1-abs(i); rsum+=r[yi]*rbs; gsum+=g[yi]*rbs; bsum+=b[yi]*rbs; if (i>0){ rinsum+=sir[0]; ginsum+=sir[1]; binsum+=sir[2]; } else { routsum+=sir[0]; goutsum+=sir[1]; boutsum+=sir[2]; } if(i<hm){ yp+=w; } } yi=x; stackpointer=radius; for (y=0;y<h;y++){ pix[yi]=0xff000000 | (dv[rsum]<<16) | (dv[gsum]<<8) | dv[bsum]; rsum-=routsum; gsum-=goutsum; bsum-=boutsum; stackstart=stackpointer-radius+div; sir=stack[stackstart%div]; routsum-=sir[0]; goutsum-=sir[1]; boutsum-=sir[2]; if(x==0){ vmin[y]=min(y+r1,hm)*w; } p=x+vmin[y]; sir[0]=r[p]; sir[1]=g[p]; sir[2]=b[p]; rinsum+=sir[0]; ginsum+=sir[1]; binsum+=sir[2]; rsum+=rinsum; gsum+=ginsum; bsum+=binsum; stackpointer=(stackpointer+1)%div; sir=stack[stackpointer]; routsum+=sir[0]; goutsum+=sir[1]; boutsum+=sir[2]; rinsum-=sir[0]; ginsum-=sir[1]; binsum-=sir[2]; yi+=w; } } img.updatePixels(); }
同时找到一个借鉴这个所改进后成为Java的代码,具体如下:
public static Bitmap doBlur(Bitmap sentBitmap, int radius, boolean canReuseInBitmap) { // Stack Blur v1.0 from // http://www.quasimondo.com/StackBlurForCanvas/StackBlurDemo.html // // Java Author: Mario Klingemann <mario at quasimondo.com> // http://incubator.quasimondo.com // created Feburary 29, 2004 // Android port : Yahel Bouaziz <yahel at kayenko.com> // http://www.kayenko.com // ported april 5th, 2012 // This is a compromise between Gaussian Blur and Box blur // It creates much better looking blurs than Box Blur, but is // 7x faster than my Gaussian Blur implementation. // // I called it Stack Blur because this describes best how this // filter works internally: it creates a kind of moving stack // of colors whilst scanning through the image. Thereby it // just has to add one new block of color to the right side // of the stack and remove the leftmost color. The remaining // colors on the topmost layer of the stack are either added on // or reduced by one, depending on if they are on the right or // on the left side of the stack. // // If you are using this algorithm in your code please add // the following line: // // Stack Blur Algorithm by Mario Klingemann <mario@quasimondo.com> Bitmap bitmap; if (canReuseInBitmap) { bitmap = sentBitmap; } else { bitmap = sentBitmap.copy(sentBitmap.getConfig(), true); } if (radius < 1) { return (null); } int w = bitmap.getWidth(); int h = bitmap.getHeight(); int[] pix = new int[w * h]; bitmap.getPixels(pix, 0, w, 0, 0, w, h); int wm = w - 1; int hm = h - 1; int wh = w * h; int div = radius + radius + 1; int r[] = new int[wh]; int g[] = new int[wh]; int b[] = new int[wh]; int rsum, gsum, bsum, x, y, i, p, yp, yi, yw; int vmin[] = new int[Math.max(w, h)]; int divsum = (div + 1) >> 1; divsum *= divsum; int dv[] = new int[256 * divsum]; for (i = 0; i < 256 * divsum; i++) { dv[i] = (i / divsum); } yw = yi = 0; int[][] stack = new int[div][3]; int stackpointer; int stackstart; int[] sir; int rbs; int r1 = radius + 1; int routsum, goutsum, boutsum; int rinsum, ginsum, binsum; for (y = 0; y < h; y++) { rinsum = ginsum = binsum = routsum = goutsum = boutsum = rsum = gsum = bsum = 0; for (i = -radius; i <= radius; i++) { p = pix[yi + Math.min(wm, Math.max(i, 0))]; sir = stack[i + radius]; sir[0] = (p & 0xff0000) >> 16; sir[1] = (p & 0x00ff00) >> 8; sir[2] = (p & 0x0000ff); rbs = r1 - Math.abs(i); rsum += sir[0] * rbs; gsum += sir[1] * rbs; bsum += sir[2] * rbs; if (i > 0) { rinsum += sir[0]; ginsum += sir[1]; binsum += sir[2]; } else { routsum += sir[0]; goutsum += sir[1]; boutsum += sir[2]; } } stackpointer = radius; for (x = 0; x < w; x++) { r[yi] = dv[rsum]; g[yi] = dv[gsum]; b[yi] = dv[bsum]; rsum -= routsum; gsum -= goutsum; bsum -= boutsum; stackstart = stackpointer - radius + div; sir = stack[stackstart % div]; routsum -= sir[0]; goutsum -= sir[1]; boutsum -= sir[2]; if (y == 0) { vmin[x] = Math.min(x + radius + 1, wm); } p = pix[yw + vmin[x]]; sir[0] = (p & 0xff0000) >> 16; sir[1] = (p & 0x00ff00) >> 8; sir[2] = (p & 0x0000ff); rinsum += sir[0]; ginsum += sir[1]; binsum += sir[2]; rsum += rinsum; gsum += ginsum; bsum += binsum; stackpointer = (stackpointer + 1) % div; sir = stack[(stackpointer) % div]; routsum += sir[0]; goutsum += sir[1]; boutsum += sir[2]; rinsum -= sir[0]; ginsum -= sir[1]; binsum -= sir[2]; yi++; } yw += w; } for (x = 0; x < w; x++) { rinsum = ginsum = binsum = routsum = goutsum = boutsum = rsum = gsum = bsum = 0; yp = -radius * w; for (i = -radius; i <= radius; i++) { yi = Math.max(0, yp) + x; sir = stack[i + radius]; sir[0] = r[yi]; sir[1] = g[yi]; sir[2] = b[yi]; rbs = r1 - Math.abs(i); rsum += r[yi] * rbs; gsum += g[yi] * rbs; bsum += b[yi] * rbs; if (i > 0) { rinsum += sir[0]; ginsum += sir[1]; binsum += sir[2]; } else { routsum += sir[0]; goutsum += sir[1]; boutsum += sir[2]; } if (i < hm) { yp += w; } } yi = x; stackpointer = radius; for (y = 0; y < h; y++) { // Preserve alpha channel: ( 0xff000000 & pix[yi] ) pix[yi] = (0xff000000 & pix[yi]) | (dv[rsum] << 16) | (dv[gsum] << 8) | dv[bsum]; rsum -= routsum; gsum -= goutsum; bsum -= boutsum; stackstart = stackpointer - radius + div; sir = stack[stackstart % div]; routsum -= sir[0]; goutsum -= sir[1]; boutsum -= sir[2]; if (x == 0) { vmin[y] = Math.min(y + r1, hm) * w; } p = x + vmin[y]; sir[0] = r[p]; sir[1] = g[p]; sir[2] = b[p]; rinsum += sir[0]; ginsum += sir[1]; binsum += sir[2]; rsum += rinsum; gsum += ginsum; bsum += binsum; stackpointer = (stackpointer + 1) % div; sir = stack[stackpointer]; routsum += sir[0]; goutsum += sir[1]; boutsum += sir[2]; rinsum -= sir[0]; ginsum -= sir[1]; binsum -= sir[2]; yi += w; } } bitmap.setPixels(pix, 0, w, 0, 0, w, h); return (bitmap); }
借鉴于此我弄了一个C的代码,基本上的整体过程都没有变化,只是改变成了C(C++也可已)的而已:
文件名:ImageBlur.c
/************************************************* Copyright: Copyright QIUJUER 2013. Author: Qiujuer Date: 2014-04-18 Description:实现图片模糊处理 **************************************************/ #include<malloc.h> #define ABS(a) ((a)<(0)?(-a):(a)) #define MAX(a,b) ((a)>(b)?(a):(b)) #define MIN(a,b) ((a)<(b)?(a):(b)) /************************************************* Function: StackBlur(堆栈模糊) Description: 使用堆栈方式进行图片像素模糊处理 Calls: malloc Table Accessed: NULL Table Updated: NULL Input: 像素点集合,图片宽,图片高,模糊半径 Output: 返回模糊后的像素点集合 Return: 返回模糊后的像素点集合 Others: NULL *************************************************/ static int* StackBlur(int* pix, int w, int h, int radius) { int wm = w - 1; int hm = h - 1; int wh = w * h; int div = radius + radius + 1; int *r = (int *)malloc(wh * sizeof(int)); int *g = (int *)malloc(wh * sizeof(int)); int *b = (int *)malloc(wh * sizeof(int)); int rsum, gsum, bsum, x, y, i, p, yp, yi, yw; int *vmin = (int *)malloc(MAX(w,h) * sizeof(int)); int divsum = (div + 1) >> 1; divsum *= divsum; int *dv = (int *)malloc(256 * divsum * sizeof(int)); for (i = 0; i < 256 * divsum; i++) { dv[i] = (i / divsum); } yw = yi = 0; int(*stack)[3] = (int(*)[3])malloc(div * 3 * sizeof(int)); int stackpointer; int stackstart; int *sir; int rbs; int r1 = radius + 1; int routsum, goutsum, boutsum; int rinsum, ginsum, binsum; for (y = 0; y < h; y++) { rinsum = ginsum = binsum = routsum = goutsum = boutsum = rsum = gsum = bsum = 0; for (i = -radius; i <= radius; i++) { p = pix[yi + (MIN(wm, MAX(i, 0)))]; sir = stack[i + radius]; sir[0] = (p & 0xff0000) >> 16; sir[1] = (p & 0x00ff00) >> 8; sir[2] = (p & 0x0000ff); rbs = r1 - ABS(i); rsum += sir[0] * rbs; gsum += sir[1] * rbs; bsum += sir[2] * rbs; if (i > 0) { rinsum += sir[0]; ginsum += sir[1]; binsum += sir[2]; } else { routsum += sir[0]; goutsum += sir[1]; boutsum += sir[2]; } } stackpointer = radius; for (x = 0; x < w; x++) { r[yi] = dv[rsum]; g[yi] = dv[gsum]; b[yi] = dv[bsum]; rsum -= routsum; gsum -= goutsum; bsum -= boutsum; stackstart = stackpointer - radius + div; sir = stack[stackstart % div]; routsum -= sir[0]; goutsum -= sir[1]; boutsum -= sir[2]; if (y == 0) { vmin[x] = MIN(x + radius + 1, wm); } p = pix[yw + vmin[x]]; sir[0] = (p & 0xff0000) >> 16; sir[1] = (p & 0x00ff00) >> 8; sir[2] = (p & 0x0000ff); rinsum += sir[0]; ginsum += sir[1]; binsum += sir[2]; rsum += rinsum; gsum += ginsum; bsum += binsum; stackpointer = (stackpointer + 1) % div; sir = stack[(stackpointer) % div]; routsum += sir[0]; goutsum += sir[1]; boutsum += sir[2]; rinsum -= sir[0]; ginsum -= sir[1]; binsum -= sir[2]; yi++; } yw += w; } for (x = 0; x < w; x++) { rinsum = ginsum = binsum = routsum = goutsum = boutsum = rsum = gsum = bsum = 0; yp = -radius * w; for (i = -radius; i <= radius; i++) { yi = MAX(0, yp) + x; sir = stack[i + radius]; sir[0] = r[yi]; sir[1] = g[yi]; sir[2] = b[yi]; rbs = r1 - ABS(i); rsum += r[yi] * rbs; gsum += g[yi] * rbs; bsum += b[yi] * rbs; if (i > 0) { rinsum += sir[0]; ginsum += sir[1]; binsum += sir[2]; } else { routsum += sir[0]; goutsum += sir[1]; boutsum += sir[2]; } if (i < hm) { yp += w; } } yi = x; stackpointer = radius; for (y = 0; y < h; y++) { // Preserve alpha channel: ( 0xff000000 & pix[yi] ) pix[yi] = (0xff000000 & pix[yi]) | (dv[rsum] << 16) | (dv[gsum] << 8) | dv[bsum]; rsum -= routsum; gsum -= goutsum; bsum -= boutsum; stackstart = stackpointer - radius + div; sir = stack[stackstart % div]; routsum -= sir[0]; goutsum -= sir[1]; boutsum -= sir[2]; if (x == 0) { vmin[y] = MIN(y + r1, hm) * w; } p = x + vmin[y]; sir[0] = r[p]; sir[1] = g[p]; sir[2] = b[p]; rinsum += sir[0]; ginsum += sir[1]; binsum += sir[2]; rsum += rinsum; gsum += ginsum; bsum += binsum; stackpointer = (stackpointer + 1) % div; sir = stack[stackpointer]; routsum += sir[0]; goutsum += sir[1]; boutsum += sir[2]; rinsum -= sir[0]; ginsum -= sir[1]; binsum -= sir[2]; yi += w; } } free(r); free(g); free(b); free(vmin); free(dv); free(stack); return(pix); }
在改为这个的过程中还遇到 了一个很喜剧的问题,我发现我使用这个来进行调用后结果程序内存一直增大,直到500多M,直接卡死。我知道是我写的有内存泄漏了!
然后找了一下,发现果然是。只好进行free了。然后一下就好了,发现内存占用的确比Java的要少,速度也是要快一些!
在JNI中的实现我使用了两种方案,一种是直接传递文件,一直是传递像素点集合进行模糊!分别如下:
/* * Class: com_accumulation_imageblurring_app_jni_ImageBlur * Method: blurIntArray * Signature: ([IIII)V */ JNIEXPORT void JNICALL Java_com_accumulation_imageblurring_app_jni_ImageBlur_blurIntArray (JNIEnv *, jclass, jintArray, jint, jint, jint); /* * Class: com_accumulation_imageblurring_app_jni_ImageBlur * Method: blurBitMap * Signature: (Landroid/graphics/Bitmap;I)V */ JNIEXPORT void JNICALL Java_com_accumulation_imageblurring_app_jni_ImageBlur_blurBitMap (JNIEnv *, jclass, jobject, jint);
对应的Java调用:
public class ImageBlur { public static native void blurIntArray(int[] pImg, int w, int h, int r); public static native void blurBitMap(Bitmap bitmap, int r); static { System.loadLibrary("JNI_ImageBlur"); } }
///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
此时我做了3种测试,一种是直接在Java层实现,一种是传递像素点集合模糊,还有就是直接传递图片进行模糊,结果如下:
通过上面的比较我们可以得出这样的结论:
1.Java的确最慢,但是其实也慢不了多少,虚拟机优化好了一样猛。
2.C中直接传递像素集合的速度最快(第一次启动)
3.在我多次切换界面后发现,直接传递像素点集合的耗时会增加,从60多到120多。
4.多次切换后发现,其实直接传递像素点的速度与传递图片过去的速度几乎一样。
5.多次操作后发现传递文件的波动较小,在100~138之间,其次是传递像素点集合的波动较大,java的波动最大!
以上就是我的结论,可能有些不正确,但是在我的机器上的确是这样!
注:勾选选择框“Downscale before blur”会先压缩图片后模糊然后放大图片,这样的情况下,模糊效果会稍微损失一些效果,但是其速度确实无法比拟的。
其耗时在:1~10ms内可运算完成。当然与你要模糊的大小有关系!
最后:项目地址:GitHub