【十大经典数据挖掘算法】k-means

QLKJacquett 9年前

来自: http://www.cnblogs.com/en-heng/p/5173704.html

1. 引言

k-means与kNN虽然都是以k打头,但却是两类算法——kNN为监督学习中的分类算法,而k-means则是非监督学习中的聚类算法;二者相同之处:均利用近邻信息来标注类别。

聚类是数据挖掘中一种非常重要的学习流派,指将未标注的样本数据中相似的分为同一类,所谓“物以类聚,人以群分”嘛。k-means是聚类算法中最为简单、高校的,核心思想:由用户指定k个初始质心(initial centroids),以作为聚类的类别(cluster),重复迭代直至算法收敛。

2. 基本算法

在k-means算法中,用质心来表示cluster;且容易证明k-means算法收敛等同于所有质心不再发生变化。基本的k-means算法流程如下:

选取k个初始质心(作为初始cluster);  repeat:      对每个样本点,计算得到距其最近的质心,将其类别标为该质心所对应的cluster;      重新计算k个cluser对应的质心;  until 质心不在发生变化

对于欧式空间的样本数据,以平方误差和(sum of the squared error, SSE)作为聚类的目标函数,同时也可以衡量不同聚类结果好坏的指标:

\[ SSE=\sum\limits_{i=1}^{k} \sum_{x\in C_{i}} dist(x, c_i) \]

表示样本点 \(x\) 到cluster \(C_i\) 的质心 \(c_i\) 距离平方和;最优的聚类结果应使得SSE达到最小值。

下图中给出了一个通过4次迭代聚类3个cluster的例子:

k-means存在缺点:

  • k-means是局部最优的,容易受到初始质心的影响;比如在下图中,因选择初始质心不恰当而造成次优的聚类结果(SSE较大):

  • 同时,k值的选取也会直接影响聚类结果,最优聚类的k值应与样本数据本身的结构信息相吻合,而这种结构信息是很难去掌握,因此选取最优k值是非常困难的。

3. 优化

为了解决上述存在缺点,在基本k-means的基础上发展了二分(bisecting) k-means,其主要思想:一个大cluster进行分裂后可以得到两个小的cluster;为了得到k个cluster,可进行k-1次分裂。算法流程如下:

初始时只有一个cluster包含所有样本点;  repeat:      从待分裂的clusters中选择一个进行二元分裂,所选的cluster应使得SSE最小;  until 有k个cluster

上述算法流程中,为从待分裂的clusters中求得局部最优解,可以采取暴力方法:依次对每个待分裂的cluster进行二元分裂(bisect)以求得最优分裂。二分k-means算法聚类过程如图:

从图中,我们容易观察到:二分k-means算法对初始质心的选择不太敏感,因为初始时只选择一个质心。

</div>