Go Commons Pool发布以及Golang多线程编程问题总结

jopen 9年前

趁着元旦放假,整理了一下最近学习Golang时,『翻译』的一个Golang的通用对象池,放到 github Go Commons Pool开源出来。之所以叫做『翻译』,是因为这个库的核心算法以及逻辑都是基于 Apache Commons Pool 的,只是把原来的Java『翻译』成了Golang。

前一段时间阅读kubernetes源码的时候,整体上学习了下Golang,但语言这种东西,学了不用,几个星期就忘差不多了。一次Golang实践群里聊天,有人问到Golang是否有通用的对象池,搜索了下,貌似没有比较完备的。当前Golang的pool有以下解决方案:

  1. sync.Pool
    sync.Pool 使用很简单,只需要传递一个创建对象的func即可。

     var objPool = sync.Pool{   New: func() interface{} {   return NewObject()}}   p := objPool.Get().(*Object)

    但sync.Pool只解决对象复用的问题,pool中的对象生命周期是两次gc之间,gc后pool中的对象会被回收,使用方不能控制对象的生命周期,所以不适合用在连接池等场景。

  2. 通过container/list来实现自定义的pool,比如redigo 就使用这种办法。但这些自定义的pool大多都不是通用的,功能也不完备。比如redigo当前没有获取连接池的超时机制,参看这个issue Blocking with timeout when Get PooledConn

而Java中的commons pool,功能比较完备,算法和逻辑也经过验证,使用也比较广泛,所以就直接『翻译』过来,顺便练习Golang的语法。

作为一个通用的对象池,需要包含以下主要功能:

  1. 对象的生命周期可以精确控制 Pool提供机制允许使用方自定义对象的创建/销毁/校验逻辑
  2. 对象的存活数量可以精确控制 Pool提供设置存活数量以及时长的配置
  3. 获取对象有超时机制避免死锁,方便使用方实现failover 以前也遇到过许多线上故障,就是因为连接池的设置或者实现机制有缺陷导致的。

Apache Commons Pool的核心是基于LinkedBlockingDeque,idle对象都放在deque中。之所以是deque,而不是queue,是因为它支持LIFO(last in, first out) /FIFO(first in, first out) 两种策略获取对象。然后有个包含所有对象的Map,key是用户自定义对象,value是PooledObject,用于校验Return Object的合法性,后台定时abandoned时遍历,计算活跃对象数等。超时是通过Java锁的wait timeout机制实现的。

下面总结下将Java翻译成Golang的时候遇到的多线程问题

递归锁或者叫可重入锁(Recursive Lock)

Java中的synchronized关键词以及LinkedBlockingDequeu中用到的ReentrantLock,都是可重入的。而Golang中的sync.Mutex是不可重入的。表现出来就是:

ReentrantLock lock;    public void a(){      lock.lock();      //do some thing      lock.unlock();  }    public void b(){      lock.lock();      //do some thing      lock.unlock();  }    public void all(){      lock.lock();      //do some thing      a();      //do some thing      b();      //do some thing      lock.unlock();  }

上例all方法中嵌套调用a方法,虽然调用a方法的时候也需要锁,但因为all已经申请锁,并且该锁可重入,所以不会导致死锁。而同样的代码在Golang中是会导致死锁的:

var lock sync.Mutex    func a() {      lock.Lock()      //do some thing      lock.Unlock()  }    func b() {      lock.Lock()      //do some thing      lock.Unlock()  }    func all() {      lock.Lock()      //do some thing      a()      //do some thing      b()      //do some thing      lock.Unlock()  }

只能重构为下面这样的(命名不规范请忽略,只是demo)

var lock sync.Mutex    func a() {      lock.Lock()      a1()      lock.Unlock()  }    func a1() {      //do some thing  }    func b() {      lock.Lock()      b1()      lock.Unlock()  }    func b1() {      //do some thing  }    func all() {      lock.Lock()      //do some thing      a1()      //do some thing      b1()      //do some thing      lock.Unlock()  }

Golang的核心开发者认为可重入锁是不好的设计,所以不提供,参看Recursive (aka reentrant) mutexes are a bad idea。于是我们使用锁的时候就需要多注意嵌套以及递归调用。

锁等待超时机制

Golang的 sync.Cond 只有Wait,没有如Java中的Condition的超时等待方法await(long time, TimeUnit unit)。这样就没法实现LinkBlockingDeque的 pollFirst(long timeout, TimeUnit unit) 这样的方法。有人提了issue,但被拒绝了 sync: add WaitTimeout method to Cond。 所以只能通过channel的机制模拟了一个超时等待的Cond。完整源码参看 go-commons-pool/concurrent/cond.go

type TimeoutCond struct {      L      sync.Locker      signal chan int  }    func NewTimeoutCond(l sync.Locker) *TimeoutCond {      cond := TimeoutCond{L: l, signal: make(chan int, 0)}      return &cond  }    /**  return remain wait time, and is interrupt  */  func (this *TimeoutCond) WaitWithTimeout(timeout time.Duration) (time.Duration, bool) {      //wait should unlock mutex,  if not will cause deadlock      this.L.Unlock()      defer this.L.Lock()      begin := time.Now().Nanosecond()      select {      case _, ok := <-this.signal:          end := time.Now().Nanosecond()          return time.Duration(end - begin), !ok      case <-time.After(timeout):          return 0, false      }  }

Map机制的问题

这个问题严格的说不属于多线程的问题。虽然Golang的map不是线程安全的,但通过mutex封装一下也很容易实现。关键问题在于我们前面提到的,pool中用于维护全部对象的map,key是用户自定义对象,value是PooledObject。而Golang对map的key的约束是:go-spec#Map_types

The comparison operators == and != must be fully defined for operands of the key type; thus the key type must not be a function, map, or slice. If the key type is an interface type, these comparison operators must be defined for the dynamic key values; failure will cause a run-time panic.

也就是说key中不能包含不可比较的值,比如 slice, map, and function。而我们的key是用户自定义的对象,没办法进行约束。于是借鉴Java的IdentityHashMap的思路,将key转换成对象的指针地址,实际上map中保存的是key对象的指针地址。

type SyncIdentityMap struct {      sync.RWMutex      m map[uintptr]interface{}  }    func (this *SyncIdentityMap) Get(key interface{}) interface{} {      this.RLock()      keyPtr := genKey(key)      value := this.m[keyPtr]      this.RUnlock()      return value  }    func genKey(key interface{}) uintptr {      keyValue := reflect.ValueOf(key)      return keyValue.Pointer()  }

同时,这样做的缺点是Pool中存的对象必须是指针,不能是值对象。比如string,int等对象是不能保存到Pool中的。

其他的关于多线程的题外话

Golang的test -race 参数非常好用,通过这个参数,发现了几个data race的bug,参看commit fix data race test error

Go Commons Pool后续工作

  1. 继续完善测试用例,测试用例当前已经完成了大约一半多,覆盖率88%。『翻译』的时候,主体代码相对来说写起来很快,但测试用例就比较麻烦多了,多线程情况下调试也比较复杂。一般基础库的测试用例代码是核心逻辑代码的2-3倍。
  2. 做下benchmark。核心算法上应该没啥问题,都是进过验证的。但用channel模拟timeout的机制上可能有瓶颈。这块要考虑timer的复用机制。参看 Terry-Mao/goim
  3. 上两项完成了,就可以准备发布个正式版本,可以通过这个pool改进下redigo。

来自: http://jolestar.com/go-commons-pool-and-go-concurrent/