python编写的最短路径算法
jopen
9年前
原文出处: 初行
一心想学习算法,很少去真正静下心来去研究,前几天趁着周末去了解了最短路径的资料,用python写了一个最短路径算法。算法是基于带权无向图去寻找两个点之间的最短路径,数据存储用邻接矩阵记录。首先画出一幅无向图如下,标出各个节点之间的权值。
一心想学习算法,很少去真正静下心来去研究,前几天趁着周末去了解了最短路径的资料,用python写了一个最短路径算法。算法是基于带权无向图去寻找两个点之间的最短路径,数据存储用邻接矩阵记录。首先画出一幅无向图如下,标出各个节点之间的权值。
其中对应索引:
A ——> 0
B——> 1
C——> 2
D——>3
E——> 4
F——> 5
G——> 6
邻接矩阵表示无向图:
算法思想是通过Dijkstra算法结合自身想法实现的。大致思路是:从起始点开始,搜索周围的路径,记录每个点到起始点的权值存到已标记权值节点字典A,将起始点存入已遍历列表B,然后再遍历已标记权值节点字典A,搜索节点周围的路径,如果周围节点存在于表B,比较累加权值,新权值小于已有权值则更新权值和来源节点,否则什么都不做;如果不存在与表B,则添加节点和权值和来源节点到表A,直到搜索到终点则结束。
这时最短路径存在于表A中,得到终点的权值和来源路径,向上递推到起始点,即可得到最短路径,下面是代码:
# -*-coding:utf-8 -*- class DijkstraExtendPath ( ) : def __init__ ( self , node_map ) : self . node_map = node_map self . node_length = len ( node_map ) self . used_node_list = [ ] self . collected_node_dict = { } def __call__ ( self , from_node , to_node ) : self . from_node = from_node self . to_node = to_node self . _init_dijkstra ( ) return self . _format_path ( ) def _init_dijkstra ( self ) : self . used_node_list . append ( self . from_node ) self . collected_node_dict [ self . from_node ] = [ 0 , - 1 ] for index1 , node1 in enumerate ( self . node_map [ self . from_node ] ) : if node1 : self . collected_node_dict [ index1 ] = [ node1 , self . from_node ] self . _foreach_dijkstra ( ) def _foreach_dijkstra ( self ) : if len ( self . used_node_list ) == self . node_length - 1 : return for key , val in self . collected_node_dict . items ( ) : # 遍历已有权值节点 if key not in self . used_node_list and key != to_node : self . used_node_list . append ( key ) else : continue for index1 , node1 in enumerate ( self . node_map [ key ] ) : # 对节点进行遍历 # 如果节点在权值节点中并且权值大于新权值 if node1 and index1 in self . collected_node_dict and self . collected_node_dict [ index1 ] [ 0 ] > node1 + val [ 0 ] : self . collected_node_dict [ index1 ] [ 0 ] = node1 + val [ 0 ] # 更新权值 self . collected_node_dict [ index1 ] [ 1 ] = key elif node1 and index1 not in self . collected_node_dict : self . collected_node_dict [ index1 ] = [ node1 + val [ 0 ] , key ] self . _foreach_dijkstra ( ) def _format_path ( self ) : node_list = [ ] temp_node = self . to_node node_list . append ( ( temp_node , self . collected_node_dict [ temp_node ] [ 0 ] ) ) while self . collected_node_dict [ temp_node ] [ 1 ] != - 1 : temp_node = self . collected_node_dict [ temp_node ] [ 1 ] node_list . append ( ( temp_node , self . collected_node_dict [ temp_node ] [ 0 ] ) ) node_list . reverse ( ) return node_list def set_node_map ( node_map , node , node_list ) : for x , y , val in node_list : node_map [ node . index ( x ) ] [ node . index ( y ) ] = node_map [ node . index ( y ) ] [ node . index ( x ) ] = val if __name__ == "__main__" : node = [ 'A' , 'B' , 'C' , 'D' , 'E' , 'F' , 'G' ] node_list = [ ( 'A' , 'F' , 9 ) , ( 'A' , 'B' , 10 ) , ( 'A' , 'G' , 15 ) , ( 'B' , 'F' , 2 ) , ( 'G' , 'F' , 3 ) , ( 'G' , 'E' , 12 ) , ( 'G' , 'C' , 10 ) , ( 'C' , 'E' , 1 ) , ( 'E' , 'D' , 7 ) ] node_map = [ [ 0 for val in xrange ( len ( node ) ) ] for val in xrange ( len ( node ) ) ] set_node_map ( node_map , node , node_list ) # A -->; D from_node = node . index ( 'A' ) to_node = node . index ( 'D' ) dijkstrapath = DijkstraPath ( node_map ) path = dijkstrapath ( from_node , to_node ) print path
运行结果:
再来一例:
# -*- coding: utf-8 -*- import itertools import re import math def combination ( lst ) : # 全排序 lists = [ ] liter = itertools . permutations ( lst ) for lts in list ( liter ) : lt = '' . join ( lts ) lists . append ( lt ) return lists def coord ( lst ) : # 坐标输入 coordinates = dict ( ) print u '请输入坐标:(格式为A:7 17)' p = re . compile ( r "d+" ) for char in lst : str = raw_input ( char + ':' ) dot = p . findall ( str ) coordinates [ char ] = [ dot [ 0 ] , dot [ 1 ] ] print coordinates return coordinates def repeat ( lst ) : # 删除重复组合 for ilist in lst : for k in xrange ( len ( ilist ) ) : st = ( ilist [ k : ] , ilist [ : k ] ) strs = '' . join ( st ) for jlist in lst : if ( cmp ( strs , jlist ) == 0 ) : lst . remove ( jlist ) for k in xrange ( len ( ilist ) ) : st = ( ilist [ k : ] , ilist [ : k ] ) strs = '' . join ( st ) for jlist in lst : if ( cmp ( strs [ :: - 1 ] , jlist ) == 0 ) : lst . remove ( jlist ) lst . append ( ilist ) print lst return lst def count ( lst , coordinates ) : # 计算各路径 way = dict ( ) for str in lst : str = str + str [ : 1 ] length = 0 for i in range ( len ( str ) - 1 ) : x = abs ( float ( coordinates [ str [ i ] ] [ 0 ] ) - float ( coordinates [ str [ i + 1 ] ] [ 0 ] ) ) y = abs ( float ( coordinates [ str [ i ] ] [ 1 ] ) - float ( coordinates [ str [ i + 1 ] ] [ 1 ] ) ) length += math . sqrt ( x * * 2 + y * * 2 ) way [ str [ : len ( str ) - 1 ] ] = length return way if __name__ == "__main__" : print u '请输入图节点:' rlist = list ( raw_input ( ) ) coordinates = coord ( rlist ) list_directive = combination ( rlist ) # print "有方向完全图所有路径为:",list_directive # for it in list_directive: # print it print u '有方向完全图所有路径总数:' , len ( list_directive ) , "n" # 无方向完全图 list_directive = repeat ( list_directive ) list_directive = repeat ( list_directive ) # print "无方向完全图所有路径为:",list_directive print u '无方向完全图所有路径为:' for it in list_directive : print it print u '无方向完全图所有路径总数:' , len ( list_directive ) ways = count ( list_directive , coordinates ) print u '路径排序如下:' for dstr in sorted ( ways . iteritems ( ) , key = lambda d : d [ 1 ] , reverse = False ) : print dstr raw_input ( )
以上就是本文给大家分享的全部内容了,希望大家能够喜欢,能够学习python有所帮助。