EM算法概述

jopen 10年前

EM算法概述

最大期望算法(Expectation Maximization Algorithm,又译期望最大化算法),是一种迭代算法,用于含有隐变量(hidden variable)的概率参数模型的最大似然估计或极大后验概率估计。

在统计计算中,最大期望(EM)算法是在概率(probabilistic)模型中寻找参数最大似然估计或者最大后验估计的算法,其中概率模型依赖 于无法观测的隐藏变量(Latent Variable)。最大期望经常用在机器学习和计算机视觉的数据聚类(Data Clustering)领域。
最大期望算法经过两个步骤交替进行计算:

第一步是计算期望(E),利用对隐藏变量的现有估计值,计算其最大似然估计值;

第二步是最大化(M),最大化在 E 步上求得的最大似然值来计算参数的值。

M 步上找到的参数估计值被用于下一个 E 步计算中,这个过程不断交替进行。

总体来说,EM的算法流程如下:

1.初始化分布参数

2.重复直到收敛:

E步骤:估计未知参数的期望值,给出当前的参数估计。

M步骤:重新估计分布参数,以使得数据的似然性最大,给出未知变量的期望估计。

EM算法简述

迭代使用EM步骤,直至收敛。

可以有一些比较形象的比喻说法把这个算法讲清楚。比如说食堂的大师傅炒了一份菜,要等分成两份给两个人吃,显然没有必要拿来天平一点一点的精确的去 称分量,最简单的办法是先随意的把菜分到两个碗中,然后观察是否一样多,把比较多的那一份取出一点放到另一个碗中,这个过程一直迭代地执行下去,直到大家 看不出两个碗所容纳的菜有什么分量上的不同为止。EM算法就是这样,假设我们估计知道A和B两个参数,在开始状态下二者都是未知的,并且知道了A的信息就 可以得到B的信息,反过来知道了B也就得到了A。可以考虑首先赋予A某种初值,以此得到B的估计值,然后从B的当前值出发,重新估计A的取值,这个过程一 直持续到收敛为止。

EM 算法是 Dempster,Laind,Rubin 于 1977 年提出的求参数极大似然估计的一种方法,它可以从非完整数据集中对参数进行 MLE 估计,是一种非常简单实用的学习算法。这种方法可以广泛地应用于处理缺损数据,截尾数据,带有噪声等所谓的不完全数据(incomplete data)。

假定集合Z = (X,Y)由观测数据 X 和未观测数据Y 组成,X 和Z = (X,Y)分别称为不完整数据和完整数据。假设Z的联合概率密度被参数化地定义为P(X,Y|Θ),其中Θ表示要被估计的参数。Θ的最大似然估计是求不完 整数据的对数似然函数L(X;Θ)的最大值而得到的:

L(Θ;X)= log p(X|Θ) = ∫log p(X,Y|Θ)dY ;

EM算法包括两个步骤:由E步和M步组成,它是通过迭代地最大化完整数据的对数似然函数Lc(X;Θ)的期望来最大化不完整数据的对数似然函数,其中:

Lc(X;Θ) =log p(X,Y |Θ) ;

假设在算法第t次迭代后Θ获得的估计记为Θ(t) ,则在(t+1)次迭代时,

E-步:计算完整数据的对数似然函数的期望,记为:

Q(Θ|Θ (t)) = E{Lc(Θ;Z)|X;Θ(t)};

M-步:通过最大化Q(Θ|Θ(t) ) 来获得新的Θ 。

通过交替使用这两个步骤,EM算法逐步改进模型的参数,使参数和训练样本的似然概率逐渐增大,最后终止于一个极大点。直观地理解EM算法,它也可被 看作为一个逐次逼近算法:事先并不知道模型的参数,可以随机的选择一套参数或者事先粗略地给定某个初始参数λ0 ,确定出对应于这组参数的最可能的状态,计算每个训练样本的可能结果的概率,在当前的状态下再由样本对参数修正,重新估计参数λ,并在新的参数下重新确定 模型的状态,这样,通过多次的迭代,循环直至某个收敛条件满足为止,就可以使得模型的参数逐渐逼近真实参数。

EM算法的主要目的是提供一个简单的迭代算法计算后验密度函数,它的最大优点是简单和稳定,但容易陷入局部最优。

End.



EM算法概述

来自36大数据(36dsj.com)