深度学习:CNN的反向求导及练习
作者:tornadomeet
前言:
CNN作为DL中最成功的模型之一,有必要对其更进一步研究它。虽然在前面的博文Stacked CNN简单介绍中 有大概介绍过CNN的使用,不过那是有个前提的:CNN中的参数必须已提前学习好。而本文的主要目的是介绍CNN参数在使用bp算法时该怎么训练,毕竟 CNN中有卷积层和下采样层,虽然和MLP的bp算法本质上相同,但形式上还是有些区别的,很显然在完成CNN反向传播前了解bp算法是必须的。本文的实 验部分是参考斯坦福UFLDL新教程UFLDL:Exercise: Convolutional Neural Network里面的内容。完成的是对MNIST数字的识别,采用有监督的CNN网络,当然了,实验很多参数结构都按照教程上给的,这里并没有去调整。
实验基础:
CNN反向传播求导时的具体过程可以参考论文Notes on Convolutional Neural Networks, Jake Bouvrie,该论文讲得很全面,比如它考虑了pooling层也加入了权值、偏置值及非线性激发(因为这2种值也需要learn),对该论文的解读可参考zouxy09的博文CNN卷积神经网络推导和实现。 除了bp算法外,本人认为理解了下面4个子问题,基本上就可以弄懂CNN的求导了(bp算法这里就不多做介绍,网上资料实在是太多了),另外为了讲清楚一 些细节过程,本文中举的例子都是简化了一些条件的,且linux下文本和公式编辑太难弄了,文中难免有些地方会出错,大家原谅下。
首先我们来看看CNN系统的目标函数,设有样本(xi, yi)共m个,CNN网络共有L层,中间包含若干个卷积层和pooling层,最后一层的输出为f(xi),则系统的loss表达式为(对权值进行了惩罚,一般分类都采用交叉熵形式):
问题一:求输出层的误差敏感项。
现在只考虑个一个输入样本(x, y)的情形,loss函数和上面的公式类似是用交叉熵来表示的,暂时不考虑权值规则项,样本标签采用one-hot编码,CNN网络的最后一层采用 softmax全连接(多分类时输出层一般用softmax),样本(x,y)经过CNN网络后的最终的输出用f(x)表示,则对应该样本的loss值 为:
其中f(x)的下标c的含义见公式:
因为x通过CNN后得到的输出f(x)是一个向量,该向量的元素值都是概率值,分别代表着x被分到各个类中的概率,而f(x)中下标c的意思就是输出向量中取对应c那个类的概率值。
采用上面的符号,可以求得此时loss值对输出层的误差敏感性表达式为:
其中e(y)表示的是样本x标签值的one-hot表示,其中只有一个元素为1,其它都为0.
其推导过程如下(先求出对输出层某个节点c的误差敏感性,参考Larochelle关于DL的课件:Output layer gradient),求出输出层中c节点的误差敏感值:
由上面公式可知,如果输出层采用sfotmax,且loss用交叉熵形式,则最后一层的误差敏感值就等于CNN网络输出值f(x)减样本标签值 e(y),即f(x)-e(y),其形式非常简单,这个公式是不是很眼熟?很多情况下如果model采用MSE的loss,即loss=1/2* (e(y)-f(x))^2,那么loss对最终的输出f(x)求导时其结果就是f(x)-e(y),虽然和上面的结果一样,但是大家不要搞混淆了,这2 个含义是不同的,一个是对输出层节点输入值的导数(softmax激发函数),一个是对输出层节点输出值的导数(任意激发函数)。而在使用MSE的 loss表达式时,输出层的误差敏感项为(f(x)-e(y)).*f(x)’,两者只相差一个因子。
这样就可以求出第L层的权值W的偏导数:
输出层偏置的偏导数:
上面2个公式的e(y)和f(x)是一个矩阵,已经把所有m个训练样本考虑进去了,每一列代表一个样本。
问题二:当接在卷积层的下一层为pooling层时,求卷积层的误差敏感项。
假设第l(小写的l,不要看成数字’1’了)层为卷积层,第l+1层为pooling层,且pooling层的误差敏感项为: ,卷积层的误差敏感项为: , 则两者的关系表达式为:
这里符号●表示的是矩阵的点积操作,即对应元素的乘积。卷积层和unsample()后的pooling层节点是一一对应的,所以下标都是用j表示。后面的符号表示的是第l层第j个节点处激发函数的导数(对节点输入的导数)。
其中的函数unsample()为上采样过程,其具体的操作得看是采用的什么pooling方法了。但unsample的大概思想 为:pooling层的每个节点是由卷积层中多个节点(一般为一个矩形区域)共同计算得到,所以pooling层每个节点的误差敏感值也是由卷积层中多个 节点的误差敏感值共同产生的,只需满足两层见各自的误差敏感值相等,下面以mean-pooling和max-pooling为例来说明。
假设卷积层的矩形大小为4×4, pooling区域大小为2×2, 很容易知道pooling后得到的矩形大小也为2*2(本文默认pooling过程是没有重叠的,卷积过程是每次移动一个像素,即是有重叠的,后续不再声 明),如果此时pooling后的矩形误差敏感值如下:
则按照mean-pooling,首先得到的卷积层应该是4×4大小,其值分布为(等值复制):
因为得满足反向传播时各层间误差敏感总和不变,所以卷积层对应每个值需要平摊(除以pooling区域大小即可,这里pooling层大小为2×2=4)),最后的卷积层值
分布为:
mean-pooling时的unsample操作可以使用matalb中的函数kron()来实现,因为是采用的矩阵Kronecker乘积。C=kron(A, B)表示的是矩阵B分别与矩阵A中每个元素相乘,然后将相乘的结果放在C中对应的位置。比如:
如果是max-pooling,则需要记录前向传播过程中pooling区域中最大值的位置,这里假设pooling层值1,3,2,4对应的pooling区域位置分别为右下、右上、左上、左下。则此时对应卷积层误差敏感值分布为:
当然了,上面2种结果还需要点乘卷积层激发函数对应位置的导数值了,这里省略掉。
问题三:当接在pooling层的下一层为卷积层时,求该pooling层的误差敏感项。
假设第l层(pooling层)有N个通道,即有N张特征图,第l+1层(卷积层)有M个特征,l层中每个通道图都对应有自己的误差敏感值,其计算依据为第l+1层所有特征核的贡献之和。下面是第l+1层中第j个核对第l层第i个通道的误差敏感值计算方法:
符号★表示的是矩阵的卷积操作,这是真正意义上的离散卷积,不同于卷积层前向传播时的相关操作,因为严格意义上来讲,卷积神经网络中的卷积操作本质 是一个相关操作,并不是卷积操作,只不过它可以用卷积的方法去实现才这样叫。而求第i个通道的误差敏感项时需要将l+1层的所有核都计算一遍,然后求和。 另外因为这里默认pooling层是线性激发函数,所以后面没有乘相应节点的导数。
举个简单的例子,假设拿出第l层某个通道图,大小为3×3,第l+1层有2个特征核,核大小为2×2,则在前向传播卷积时第l+1层会有2个大小为2×2的卷积图。如果2个特征核分别为:
反向传播求误差敏感项时,假设已经知道第l+1层2个卷积图的误差敏感值:
离散卷积函数conv2()的实现相关子操作时需先将核旋转180度(即左右翻转后上下翻转),但这里实现的是严格意义上的卷积,所以在用 conv2()时,对应的参数核不需要翻转(在有些toolbox里面,求这个问题时用了旋转,那是因为它们已经把所有的卷积核都旋转过,这样在前向传播 时的相关操作就不用旋转了。并不矛盾)。且这时候该函数需要采用’full’模式,所以最终得到的矩阵大小为3×3,(其中3=2+2-1),刚好符第l 层通道图的大小。采用’full’模式需先将第l+1层2个卷积图扩充,周围填0,padding后如下:
扩充后的矩阵和对应的核进行卷积的结果如下情况:
可以通过手动去验证上面的结果,因为是离散卷积操作,而离散卷积等价于将核旋转后再进行相关操作。而第l层那个通道的误差敏感项为上面2者的和,呼应问题三,最终答案为:
那么这样问题3这样解的依据是什么呢?其实很简单,本质上还是bp算法,即第l层的误差敏感值等于第l+1层的误差敏感值乘以两者之间的权值,只不 过这里由于是用了卷积,且是有重叠的,l层中某个点会对l+1层中的多个点有影响。比如说最终的结果矩阵中最中间那个0.3是怎么来的呢?在用2×2的核 对3×3的输入矩阵进行卷积时,一共进行了4次移动,而3×3矩阵最中间那个值在4次移动中均对输出结果有影响,且4次的影响分别在右下角、左下角、右上 角、左上角。所以它的值为2×0.2+1×0.1+1×0.1-1×0.3=0.3, 建议大家用笔去算一下,那样就可以明白为什么这里可以采用带’full’类型的conv2()实现。
问题四:求与卷积层相连那层的权值、偏置值导数。
前面3个问题分别求得了输出层的误差敏感值、从pooling层推断出卷积层的误差敏感值、从卷积层推断出pooling层的误差敏感值。下面需要 利用这些误差敏感值模型中参数的导数。这里没有考虑pooling层的非线性激发,因此pooling层前面是没有权值的,也就没有所谓的权值的导数了。 现在将主要精力放在卷积层前面权值的求导上(也就是问题四)。
假设现在需要求第l层的第i个通道,与第l+1层的第j个通道之间的权值和偏置的导数,则计算公式如下:
其中符号⊙表示矩阵的相关操作,可以采用conv2()函数实现。在使用该函数时,需将第l+1层第j个误差敏感值翻转。
例如,如果第l层某个通道矩阵i大小为4×4,如下:
第l+1层第j个特征的误差敏感值矩阵大小为3×3,如下:
很明显,这时候的特征Kij导数的大小为2×2的,且其结果为:
而此时偏置值bj的导数为1.2 ,将j区域的误差敏感值相加即可(0.8+0.1-0.6+0.3+0.5+0.7-0.4-0.2=1.2),因为b对j中的每个节点都有贡献,按照多项式的求导规则(和的导数等于导数的和)很容易得到。
为什么采用矩阵的相关操作就可以实现这个功能呢?由bp算法可知,l层i和l+1层j之间的权值等于l+1层j处误差敏感值乘以l层i处的输入,而 j中某个节点因为是由i+1中一个区域与权值卷积后所得,所以j处该节点的误差敏感值对权值中所有元素都有贡献,由此可见,将j中每个元素对权值的贡献 (尺寸和核大小相同)相加,就得到了权值的偏导数了(这个例子的结果是由9个2×2大小的矩阵之和),同样,如果大家动笔去推算一下,就会明白这时候为什 么可以用带’valid’的conv2()完成此功能。
实验总结:
- 卷积层过后,可以先跟pooling层,再通过非线性传播函数。也可以是先通过非线性传播函数再经过pooling层。
- CNN的结构本身就是一种规则项。
- 实际上每个权值的学习率不同时优化会更好。
- 发现Ng以前的ufldl中教程里面softmax并没有包含偏置值参数,至少他给的start code里面没有包含,严格来说是错误的。
- 当输入样本为多个时,bp算法中的误差敏感性也是一个矩阵。每一个样本都对应有自己每层的误差敏感性。
- 血的教训啊,以后循环变量名不能与终止名太相似,一不小心引用下标是就弄错,比如for filterNum = 1:numFilters 时一不小心把下标用numFilters去代替了,花了大半天去查这个debug.
7. matlab中conv2()函数在卷积过程中默认是每次移动一个像素,即重叠度最高的卷积。
实验结果:
按照网页教程UFLDL:Exercise: Convolutional Neural Network和UFLDL:Optimization: Stochastic Gradient Descent,对MNIST数据库进行识别,完成练习中YOU CODE HERE部分后,该CNN网络的识别率为:
95.76%
只采用了一个卷积层+一个pooling层+一个softmax层。卷积层的特征个数为20,卷积核大小为9×9, pooling区域大小为2×2.
在进行实验前,需下载好本实验的标准代码:https://github.com/amaas/stanford_dl_ex。
然后在common文件夹放入下载好的MNIST数据库,见http://yann.lecun.com/exdb/mnist/.注意MNIST文件名需要和代码中的保持一致。
实验代码:
cnnTrain.m:
%% Convolution Neural Network Exercise % Instructions % ------------ % % This file contains code that helps you get started in building a single. % layer convolutional nerual network. In this exercise, you will only % need to modify cnnCost.m and cnnminFuncSGD.m. You will not need to % modify this file. %%====================================================================== %% STEP 0: Initialize Parameters and Load Data % Here we initialize some parameters used for the exercise. % Configuration imageDim = 28; numClasses = 10; % Number of classes (MNIST images fall into 10 classes) filterDim = 9; % Filter size for conv layer,9*9 numFilters = 20; % Number of filters for conv layer poolDim = 2; % Pooling dimension, (should divide imageDim-filterDim+1) % Load MNIST Train addpath ./common/; images = loadMNISTImages('./common/train-images-idx3-ubyte'); images = reshape(images,imageDim,imageDim,[]); labels = loadMNISTLabels('./common/train-labels-idx1-ubyte'); labels(labels==0) = 10; % Remap 0 to 10 % Initialize Parameters,theta=(2165,1),2165=9*9*20+20+100*20*10+10 theta = cnnInitParams(imageDim,filterDim,numFilters,poolDim,numClasses); %%====================================================================== %% STEP 1: Implement convNet Objective % Implement the function cnnCost.m. %%====================================================================== %% STEP 2: Gradient Check % Use the file computeNumericalGradient.m to check the gradient % calculation for your cnnCost.m function. You may need to add the % appropriate path or copy the file to this directory. DEBUG=false; % set this to true to check gradient %DEBUG = true; if DEBUG % To speed up gradient checking, we will use a reduced network and % a debugging data set db_numFilters = 2; db_filterDim = 9; db_poolDim = 5; db_images = images(:,:,1:10); db_labels = labels(1:10); db_theta = cnnInitParams(imageDim,db_filterDim,db_numFilters,... db_poolDim,numClasses); [cost grad] = cnnCost(db_theta,db_images,db_labels,numClasses,... db_filterDim,db_numFilters,db_poolDim); % Check gradients numGrad = computeNumericalGradient( @(x) cnnCost(x,db_images,... db_labels,numClasses,db_filterDim,... db_numFilters,db_poolDim), db_theta); % Use this to visually compare the gradients side by side disp([numGrad grad]); diff = norm(numGrad-grad)/norm(numGrad+grad); % Should be small. In our implementation, these values are usually % less than 1e-9. disp(diff); assert(diff < 1e-9,... 'Difference too large. Check your gradient computation again'); end; %%====================================================================== %% STEP 3: Learn Parameters % Implement minFuncSGD.m, then train the model. % 因为是采用的mini-batch梯度下降法,所以总共对样本的循环次数次数比标准梯度下降法要少 % 很多,因为每次循环中权值已经迭代多次了 options.epochs = 3; options.minibatch = 256; options.alpha = 1e-1; options.momentum = .95; opttheta = minFuncSGD(@(x,y,z) cnnCost(x,y,z,numClasses,filterDim,... numFilters,poolDim),theta,images,labels,options); save('theta.mat','opttheta'); %%====================================================================== %% STEP 4: Test % Test the performance of the trained model using the MNIST test set. Your % accuracy should be above 97% after 3 epochs of training testImages = loadMNISTImages('./common/t10k-images-idx3-ubyte'); testImages = reshape(testImages,imageDim,imageDim,[]); testLabels = loadMNISTLabels('./common/t10k-labels-idx1-ubyte'); testLabels(testLabels==0) = 10; % Remap 0 to 10 [~,cost,preds]=cnnCost(opttheta,testImages,testLabels,numClasses,... filterDim,numFilters,poolDim,true); acc = sum(preds==testLabels)/length(preds); % Accuracy should be around 97.4% after 3 epochs fprintf('Accuracy is %f\n',acc);
cnnConvolve.m:
function convolvedFeatures = cnnConvolve(filterDim, numFilters, images, W, b) %cnnConvolve Returns the convolution of the features given by W and b with %the given images % % Parameters: % filterDim - filter (feature) dimension % numFilters - number of feature maps % images - large images to convolve with, matrix in the form % images(r, c, image number) % W, b - W, b for features from the sparse autoencoder,传进来的w已经是矩阵的形式 % W is of shape (filterDim,filterDim,numFilters) % b is of shape (numFilters,1) % % Returns: % convolvedFeatures - matrix of convolved features in the form % convolvedFeatures(imageRow, imageCol, featureNum, imageNum) numImages = size(images, 3); imageDim = size(images, 1); convDim = imageDim - filterDim + 1; convolvedFeatures = zeros(convDim, convDim, numFilters, numImages); % Instructions: % Convolve every filter with every image here to produce the % (imageDim - filterDim + 1) x (imageDim - filterDim + 1) x numFeatures x numImages % matrix convolvedFeatures, such that % convolvedFeatures(imageRow, imageCol, featureNum, imageNum) is the % value of the convolved featureNum feature for the imageNum image over % the region (imageRow, imageCol) to (imageRow + filterDim - 1, imageCol + filterDim - 1) % % Expected running times: % Convolving with 100 images should take less than 30 seconds % Convolving with 5000 images should take around 2 minutes % (So to save time when testing, you should convolve with less images, as % described earlier) for imageNum = 1:numImages for filterNum = 1:numFilters % convolution of image with feature matrix convolvedImage = zeros(convDim, convDim); % Obtain the feature (filterDim x filterDim) needed during the convolution %%% YOUR CODE HERE %%% filter = W(:,:,filterNum); bc = b(filterNum); % Flip the feature matrix because of the definition of convolution, as explained later filter = rot90(squeeze(filter),2); % Obtain the image im = squeeze(images(:, :, imageNum)); % Convolve "filter" with "im", adding the result to convolvedImage % be sure to do a 'valid' convolution %%% YOUR CODE HERE %%% convolvedImage = conv2(im, filter, 'valid'); % Add the bias unit % Then, apply the sigmoid function to get the hidden activation %%% YOUR CODE HERE %%% convolvedImage = sigmoid(convolvedImage+bc); convolvedFeatures(:, :, filterNum, imageNum) = convolvedImage; end end end function sigm = sigmoid(x) sigm = 1./(1+exp(-x)); end
cnnPool.m:
function pooledFeatures = cnnPool(poolDim, convolvedFeatures) %cnnPool Pools the given convolved features % % Parameters: % poolDim - dimension of pooling region % convolvedFeatures - convolved features to pool (as given by cnnConvolve) % convolvedFeatures(imageRow, imageCol, featureNum, imageNum) % % Returns: % pooledFeatures - matrix of pooled features in the form % pooledFeatures(poolRow, poolCol, featureNum, imageNum) % numImages = size(convolvedFeatures, 4); numFilters = size(convolvedFeatures, 3); convolvedDim = size(convolvedFeatures, 1); pooledFeatures = zeros(convolvedDim / poolDim, ... convolvedDim / poolDim, numFilters, numImages); % Instructions: % Now pool the convolved features in regions of poolDim x poolDim, % to obtain the % (convolvedDim/poolDim) x (convolvedDim/poolDim) x numFeatures x numImages % matrix pooledFeatures, such that % pooledFeatures(poolRow, poolCol, featureNum, imageNum) is the % value of the featureNum feature for the imageNum image pooled over the % corresponding (poolRow, poolCol) pooling region. % % Use mean pooling here. %%% YOUR CODE HERE %%% % convolvedFeatures(imageRow, imageCol, featureNum, imageNum) % pooledFeatures(poolRow, poolCol, featureNum, imageNum) for numImage = 1:numImages for numFeature = 1:numFilters for poolRow = 1:convolvedDim / poolDim offsetRow = 1+(poolRow-1)*poolDim; for poolCol = 1:convolvedDim / poolDim offsetCol = 1+(poolCol-1)*poolDim; patch = convolvedFeatures(offsetRow:offsetRow+poolDim-1, ... offsetCol:offsetCol+poolDim-1,numFeature,numImage); %取出一个patch pooledFeatures(poolRow,poolCol,numFeature,numImage) = mean(patch(:)); end end end end end
cnnCost.m:
function [cost, grad, preds] = cnnCost(theta,images,labels,numClasses,... filterDim,numFilters,poolDim,pred) % Calcualte cost and gradient for a single layer convolutional % neural network followed by a softmax layer with cross entropy % objective. % % Parameters: % theta - unrolled parameter vector % images - stores images in imageDim x imageDim x numImges % array % numClasses - number of classes to predict % filterDim - dimension of convolutional filter % numFilters - number of convolutional filters % poolDim - dimension of pooling area % pred - boolean only forward propagate and return % predictions % % % Returns: % cost - cross entropy cost % grad - gradient with respect to theta (if pred==False) % preds - list of predictions for each example (if pred==True) if ~exist('pred','var') pred = false; end; imageDim = size(images,1); % height/width of image numImages = size(images,3); % number of images lambda = 3e-3; % weight decay parameter %% Reshape parameters and setup gradient matrices % Wc is filterDim x filterDim x numFilters parameter matrix % bc is the corresponding bias % Wd is numClasses x hiddenSize parameter matrix where hiddenSize % is the number of output units from the convolutional layer % bd is corresponding bias [Wc, Wd, bc, bd] = cnnParamsToStack(theta,imageDim,filterDim,numFilters,... poolDim,numClasses); %the theta vector cosists wc,wd,bc,bd in order % Same sizes as Wc,Wd,bc,bd. Used to hold gradient w.r.t above params. Wc_grad = zeros(size(Wc)); Wd_grad = zeros(size(Wd)); bc_grad = zeros(size(bc)); bd_grad = zeros(size(bd)); %%====================================================================== %% STEP 1a: Forward Propagation % In this step you will forward propagate the input through the % convolutional and subsampling (mean pooling) layers. You will then use % the responses from the convolution and pooling layer as the input to a % standard softmax layer. %% Convolutional Layer % For each image and each filter, convolve the image with the filter, add % the bias and apply the sigmoid nonlinearity. Then subsample the % convolved activations with mean pooling. Store the results of the % convolution in activations and the results of the pooling in % activationsPooled. You will need to save the convolved activations for % backpropagation. convDim = imageDim-filterDim+1; % dimension of convolved output outputDim = (convDim)/poolDim; % dimension of subsampled output % convDim x convDim x numFilters x numImages tensor for storing activations activations = zeros(convDim,convDim,numFilters,numImages); % outputDim x outputDim x numFilters x numImages tensor for storing % subsampled activations activationsPooled = zeros(outputDim,outputDim,numFilters,numImages); %%% YOUR CODE HERE %%% convolvedFeatures = cnnConvolve(filterDim, numFilters, images, Wc, bc); %前向传播,已经经过了激发函数 activationsPooled = cnnPool(poolDim, convolvedFeatures); % Reshape activations into 2-d matrix, hiddenSize x numImages, % for Softmax layer activationsPooled = reshape(activationsPooled,[],numImages); %% Softmax Layer % Forward propagate the pooled activations calculated above into a % standard softmax layer. For your convenience we have reshaped % activationPooled into a hiddenSize x numImages matrix. Store the % results in probs. % numClasses x numImages for storing probability that each image belongs to % each class. probs = zeros(numClasses,numImages); %%% YOUR CODE HERE %%% %Wd=(numClasses,hiddenSize),probs的每一列代表一个输出 M = Wd*activationsPooled+repmat(bd,[1,numImages]); M = bsxfun(@minus,M,max(M,[],1)); M = exp(M); probs = bsxfun(@rdivide, M, sum(M)); %why rdivide? %%====================================================================== %% STEP 1b: Calculate Cost % In this step you will use the labels given as input and the probs % calculate above to evaluate the cross entropy objective. Store your % results in cost. cost = 0; % save objective into cost %%% YOUR CODE HERE %%% % cost = -1/numImages*labels(:)'*log(probs(:)); % 首先需要把labels弄成one-hot编码 groundTruth = full(sparse(labels, 1:numImages, 1)); cost = -1./numImages*groundTruth(:)'*log(probs(:))+(lambda/2.)*(sum(Wd(:).^2)+sum(Wc(:).^2)); %加入一个惩罚项 % cost = -1./numImages*groundTruth(:)'*log(probs(:)); % Makes predictions given probs and returns without backproagating errors. if pred [~,preds] = max(probs,[],1); preds = preds'; grad = 0; return; end; %% 将c步和d步合成在一起了 %====================================================================== % STEP 1c: Backpropagation % Backpropagate errors through the softmax and convolutional/subsampling % layers. Store the errors for the next step to calculate the gradient. % Backpropagating the error w.r.t the softmax layer is as usual. To % backpropagate through the pooling layer, you will need to upsample the % error with respect to the pooling layer for each filter and each image. % Use the kron function and a matrix of ones to do this upsampling % quickly. % STEP 1d: Gradient Calculation % After backpropagating the errors above, we can use them to calculate the % gradient with respect to all the parameters. The gradient w.r.t the % softmax layer is calculated as usual. To calculate the gradient w.r.t. % a filter in the convolutional layer, convolve the backpropagated error % for that filter with each image and aggregate over images. %%% YOUR CODE HERE %%% %%% YOUR CODE HERE %%% % 网络结构: images--> convolvedFeatures--> activationsPooled--> probs % Wd = (numClasses,hiddenSize) % bd = (hiddenSize,1) % Wc = (filterDim,filterDim,numFilters) % bc = (numFilters,1) % activationsPooled = zeros(outputDim,outputDim,numFilters,numImages); % convolvedFeatures = (convDim,convDim,numFilters,numImages) % images(imageDim,imageDim,numImges) delta_d = -(groundTruth-probs); % softmax layer's preactivation,每一个样本都对应有自己每层的误差敏感性。 Wd_grad = (1./numImages)*delta_d*activationsPooled'+lambda*Wd; bd_grad = (1./numImages)*sum(delta_d,2); %注意这里是要求和 delta_s = Wd'*delta_d; %the pooling/sample layer's preactivation delta_s = reshape(delta_s,outputDim,outputDim,numFilters,numImages); %进行unsampling操作,由于kron函数只能对二维矩阵操作,所以还得分开弄 %delta_c = convolvedFeatures.*(1-convolvedFeatures).*(1./poolDim^2)*kron(delta_s, ones(poolDim)); delta_c = zeros(convDim,convDim,numFilters,numImages); for i=1:numImages for j=1:numFilters delta_c(:,:,j,i) = (1./poolDim^2)*kron(squeeze(delta_s(:,:,j,i)), ones(poolDim)); end end delta_c = convolvedFeatures.*(1-convolvedFeatures).*delta_c; % Wc_grad = convn(images,rot90(delta_c,2,'valid'))+ lambda*Wc; for i=1:numFilters Wc_i = zeros(filterDim,filterDim); for j=1:numImages Wc_i = Wc_i+conv2(squeeze(images(:,:,j)),rot90(squeeze(delta_c(:,:,i,j)),2),'valid'); end % Wc_i = convn(images,rot180(squeeze(delta_c(:,:,i,:))),'valid'); % add penalize Wc_grad(:,:,i) = (1./numImages)*Wc_i+lambda*Wc(:,:,i); bc_i = delta_c(:,:,i,:); bc_i = bc_i(:); bc_grad(i) = sum(bc_i)/numImages; end %% Unroll gradient into grad vector for minFunc grad = [Wc_grad(:) ; Wd_grad(:) ; bc_grad(:) ; bd_grad(:)]; end function X = rot180(X) X = flipdim(flipdim(X, 1), 2); end
minFuncSGD.m:
function [opttheta] = minFuncSGD(funObj,theta,data,labels,... options) % Runs stochastic gradient descent with momentum to optimize the % parameters for the given objective. % % Parameters: % funObj - function handle which accepts as input theta, % data, labels and returns cost and gradient w.r.t % to theta. % theta - unrolled parameter vector % data - stores data in m x n x numExamples tensor % labels - corresponding labels in numExamples x 1 vector % options - struct to store specific options for optimization % % Returns: % opttheta - optimized parameter vector % % Options (* required) % epochs* - number of epochs through data % alpha* - initial learning rate % minibatch* - size of minibatch % momentum - momentum constant, defualts to 0.9 %%====================================================================== %% Setup assert(all(isfield(options,{'epochs','alpha','minibatch'})),... 'Some options not defined'); if ~isfield(options,'momentum') options.momentum = 0.9; end; epochs = options.epochs; alpha = options.alpha; minibatch = options.minibatch; m = length(labels); % training set size % Setup for momentum mom = 0.5; momIncrease = 20; velocity = zeros(size(theta)); %%====================================================================== %% SGD loop it = 0; for e = 1:epochs % randomly permute indices of data for quick minibatch sampling rp = randperm(m); for s=1:minibatch:(m-minibatch+1) it = it + 1; % increase momentum after momIncrease iterations if it == momIncrease mom = options.momentum; end; % get next randomly selected minibatch mb_data = data(:,:,rp(s:s+minibatch-1)); % 取出当前的mini-batch的训练样本 mb_labels = labels(rp(s:s+minibatch-1)); % evaluate the objective function on the next minibatch [cost grad] = funObj(theta,mb_data,mb_labels); % Instructions: Add in the weighted velocity vector to the % gradient evaluated above scaled by the learning rate. % Then update the current weights theta according to the % sgd update rule %%% YOUR CODE HERE %%% velocity = mom*velocity+alpha*grad; % 见ufldl教程Optimization: Stochastic Gradient Descent theta = theta-velocity; fprintf('Epoch %d: Cost on iteration %d is %f\n',e,it,cost); end; % aneal learning rate by factor of two after each epoch alpha = alpha/2.0; end; opttheta = theta; end
computeNumericalGradient.m:
function numgrad = computeNumericalGradient(J, theta) % numgrad = computeNumericalGradient(J, theta) % theta: a vector of parameters % J: a function that outputs a real-number. Calling y = J(theta) will return the % function value at theta. % Initialize numgrad with zeros numgrad = zeros(size(theta)); %% ---------- YOUR CODE HERE -------------------------------------- % Instructions: % Implement numerical gradient checking, and return the result in numgrad. % (See Section 2.3 of the lecture notes.) % You should write code so that numgrad(i) is (the numerical approximation to) the % partial derivative of J with respect to the i-th input argument, evaluated at theta. % I.e., numgrad(i) should be the (approximately) the partial derivative of J with % respect to theta(i). % % Hint: You will probably want to compute the elements of numgrad one at a time. epsilon = 1e-4; for i =1:length(numgrad) oldT = theta(i); theta(i)=oldT+epsilon; pos = J(theta); theta(i)=oldT-epsilon; neg = J(theta); numgrad(i) = (pos-neg)/(2*epsilon); theta(i)=oldT; if mod(i,100)==0 fprintf('Done with %d\n',i); end; end; %% --------------------------------------------------------------- end
cnnInitParams.m:
function theta = cnnInitParams(imageDim,filterDim,numFilters,... poolDim,numClasses) % Initialize parameters for a single layer convolutional neural % network followed by a softmax layer. % % Parameters: % imageDim - height/width of image % filterDim - dimension of convolutional filter % numFilters - number of convolutional filters % poolDim - dimension of pooling area % numClasses - number of classes to predict % % % Returns: % theta - unrolled parameter vector with initialized weights %% Initialize parameters randomly based on layer sizes. assert(filterDim < imageDim,'filterDim must be less that imageDim'); Wc = 1e-1*randn(filterDim,filterDim,numFilters); outDim = imageDim - filterDim + 1; % dimension of convolved image % assume outDim is multiple of poolDim assert(mod(outDim,poolDim)==0,... 'poolDim must divide imageDim - filterDim + 1'); outDim = outDim/poolDim; hiddenSize = outDim^2*numFilters; % we'll choose weights uniformly from the interval [-r, r] r = sqrt(6) / sqrt(numClasses+hiddenSize+1); Wd = rand(numClasses, hiddenSize) * 2 * r - r; bc = zeros(numFilters, 1); %初始化为0 bd = zeros(numClasses, 1); % Convert weights and bias gradients to the vector form. % This step will "unroll" (flatten and concatenate together) all % your parameters into a vector, which can then be used with minFunc. theta = [Wc(:) ; Wd(:) ; bc(:) ; bd(:)]; end
cnnParamsToStack.m:
function [Wc, Wd, bc, bd] = cnnParamsToStack(theta,imageDim,filterDim,... numFilters,poolDim,numClasses) % Converts unrolled parameters for a single layer convolutional neural % network followed by a softmax layer into structured weight % tensors/matrices and corresponding biases % % Parameters: % theta - unrolled parameter vectore % imageDim - height/width of image % filterDim - dimension of convolutional filter % numFilters - number of convolutional filters % poolDim - dimension of pooling area % numClasses - number of classes to predict % % % Returns: % Wc - filterDim x filterDim x numFilters parameter matrix % Wd - numClasses x hiddenSize parameter matrix, hiddenSize is % calculated as numFilters*((imageDim-filterDim+1)/poolDim)^2 % bc - bias for convolution layer of size numFilters x 1 % bd - bias for dense layer of size hiddenSize x 1 outDim = (imageDim - filterDim + 1)/poolDim; hiddenSize = outDim^2*numFilters; %% Reshape theta indS = 1; indE = filterDim^2*numFilters; Wc = reshape(theta(indS:indE),filterDim,filterDim,numFilters); indS = indE+1; indE = indE+hiddenSize*numClasses; Wd = reshape(theta(indS:indE),numClasses,hiddenSize); indS = indE+1; indE = indE+numFilters; bc = theta(indS:indE); bd = theta(indE+1:end); end
2013.12.30:
微博网友@路遥_机器学习利用matlab自带的优化函数conv2,实现的mean-pooling,可以大大加快速度,大家可以参考。cnnPool.m文件里面:
tmp = conv2(convolvedFeatures(:,:,numFeature,numImage), ones(poolDim),'valid'); pooledFeatures(:,:,numFeature,numImage) =1./(poolDim^2)*tmp(1:poolDim:end,1:poolDim:end);
参考资料:
Deep learning:三十八(Stacked CNN简单介绍)
UFLDL:Convolutional Neural Network
UFLDL:Exercise: Convolutional Neural Network
UFLDL:Optimization: Stochastic Gradient Descent
zouxy09博文:Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现
论文Notes on Convolutional Neural Networks, Jake Bouvrie
Larochelle关于DL的课件:Output layer gradient
github.com/rasmusbergpalm/DeepLearnToolbox/blob/master/CNN/cnnbp.m
https://github.com/amaas/stanford_dl_ex
http://yann.lecun.com/exdb/mnist/