这两年机器学习的概念一直很火,无人车、人脸识别、语音识别,似乎无所不能。但有一点被忽略了,“机器学习”算法只是众多算法的一种,和快速排序、red-black BST 一样,它有自己独特的应用场景,而且
机器学习Machine-Learning 主要内容 前言 课程列表 推荐学习路线 数学基础初级 程序语言能力 机器学习课程初级 数学基础中级 机器学习课程中级 推荐书籍列表 机器学习专项领域学习 前言
自然语言处理 ScalaNLP—机器学习和数值计算库的套装 Breeze —Scala用的数值处理库 Chalk—自然语言处理库。 FACTORIE—可部署的概率建
本文主要回顾下几个常用算法的适应场景和优缺点! 对于你的分类问题,你知道应该如何选择哪一个机器学习算法么?当然,如果你真的在乎精度(accuracy),最好的方法就是通过交叉验证(cross-v
Part 1: 机器学习的前世今生. 既然说机器学习,就从什么机器学习开始,相对而言,机器学习是一个比较泛的概念 初看的话,会觉得机器学习和人工智能,数据挖掘讲的东西很像,实际他们之间的关系可以概括为:
Adaboost是一种组合学习的提升算法,能将多个弱学习算法(甚至只比随机猜测好一点)组合起来,构成一个足够强大的学习模型。 组合学习 组合学习是将多个假说组合起来,并集成它们的预测。比如对于一个
最近学习的重点不在机器学习上面,但是现代的学科就是这么奇妙,错综复杂,玩着玩着,你发现又回到了人工智能这一块。所以干脆好好整理下当下令很多 人如痴如醉,但又不容易入门的机器学习。一来给大多数还没有入门
专为机器学习初学者推荐的优质学习资源,帮助初学者快速入门。 这篇文章的确很难写,因为我希望它真正地对初学者有帮助。面前放着一张空白的纸,我坐下来问自己一个难题:面对一个对机器学习领域完全陌生的初学
如果你不是数学系的,就不要看这个了。 因为以下内容全都在证明机器学习的方法是有效的,你可以用机器学习来得到你想要的结果。然而对于编程或者使用这个方法的人来说,你只要放心大胆地用就行了。就像你知
Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络, 最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得。
【机器学习】Tensorflow学习笔记
36 Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络, 最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得。
希望这篇文章能对学习者有所启发。我在空白页前坐下,并且问自己了一个很难的问题:什么样的库、课程、论文和书籍对于机器学习的初学者来说是最好的。我必须把自己当做一个程序员和一个机器学习的初学者,站在这个角度去考虑最合适的资源。
这是一篇很难写的文章,因为我希望这篇文章能对学习者有所启发。我在空白页前坐下,并且问自己了一个很难的问题:什么样的库、课程、论文和书籍对于机器学习的初学者来说,是最好的。 文章里到底写什么、不写什
下面是25个Java机器学习的工具&&库列表: 1. Weka 是一个数据挖掘任务机器学习算法的集合。这些算法可以直接应用于数据集或者在你自己的Java代码中调用。Weka 包含 数据预处理、分类、回归、聚类、关联规则、可视化
机器学习(Machine Learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能
机器学习资料大汇总 作者:我爱机器学习( 52ml.net) 注: 本页面主要针对想快速上手机器学习而又不想深入研究的同学,对于专门的researcher,建议直接啃 PRML,ESL,MLA
Aerosolve是支撑Airbnb定价建议系统的机器学习引擎。 传统的机器学习引擎更像一个黑箱,很难知道是哪一个feature对最后的结果产生 了最大的影响。比如Airbnb上的房东设定价格后,
alex_net(x, weights, biases, keep_prob) # 定义损失函数和学习步骤 cost = tf.reduce_mean(tf.nn.softmax_cross_entr
etails/50615748 Tensorflow TensorFlow 是谷歌开源的机器学习框架,相对于其它现有框架来说,其具有比较好的扩展性,但是也牺牲了它的速度。 下面介绍Tensorflow