以前的机器学习似乎是阳春白雪,只有大公司和尖端高校实验室才能玩得转。有一群人,他们的梦想是使机器学习技术变得下里巴人,让人人都能用机器学习。他们分布在两类从事机器学习技术研发的公司: 提供机器学习技术平台
Python中最好的机器学习库
SHOGUN是一个机器学习工具箱,其重点是在大尺度上的内核的方法,特别是支持向量机(SVM)的学习工具箱。它提供了一个通用的SVM对象接口 连接到几个不同的SVM的实现中,所有相同的底层,高效的内核实
和大多数人一样,小弟对各种机器学习和数据挖掘算法都小有兴趣,常用的算法也都知道基本思想,但尝试不多。最近收集了一些算法的实用技巧,待有空时仔细研读。 (1)机器学习那些事 & 机器学习根基 那些事儿:http://homes
vowpal_wabbit 是一个机器学习系统,它能推动机器学习前沿技术的学习,例如在线学习、哈希、交互学习等。 你需要下面几款软件: Boost 库,Boost::Program_Options
根据不同的算法和方法分门别类收集了GoLang的机器学习资源库列表。 Generalized Machine Learning Libraries: GoML - https://github
机梯度上升法。由于可以在新样本到来之前对分类器进行增量式更新,因此随机梯度算法是一个在线学习算法。与”在线学习“相对应,一次处理所有数据被称作是”批处理“ 随机梯度上升算法可以写成如下的伪代码:
PCA 算法也叫主成分分析(principal components analysis),主要是用于数据降维的。 为什么要进行数据降维?因为实际情况中我们的训练数据会存在特征过多或者是特征累赘的问题
本文总结了机器学习的经典书籍,包括数学基础和算法理论的书籍。本文会保持更新,欢迎推荐。 入门书单 《数学之美》 PDF 52 作者吴军大家都很熟悉。以极为通俗的语言讲述了数学在机器学习和自然语言处理等领域的应用。
1. 前言 熟悉机器学习的童鞋都知道,优化方法是其中一个非常重要的话题,最常见的情形就是利用目标函数的导数通过多次迭代来求解无约束最优化问题。实现简 单,coding 方便,是训练模型的必备利器之
11个著名的开源机器学习工具
本列表总结了25个Java机器学习工具&库: 1. Weka 集成了数据挖掘工作的机器学习算法。这些算法可以直接应用于一个数据集上或者你可以自己编写代码来调用。Weka包括一系列的工具,如数据预处
本文我们会概述一些流行的机器学习算法。 机器学习算法很多,并且它们自身又有很多延伸。因此,如何确定解决一个问题的最好算法是很困难的。 下面我们先说基于学习方式对算法的分类和算法之间的相似
scikit-learn 是机器学习领域非常热门的一个开源库,基于Python 语言写成。可以免费使用。 网址: http://scikit-learn.org/stable/index.html
「机器人会梦见电子羊吗?」仍不失为一个好问题(译者注:《机器人会梦见电子羊吗?》(Do Androids Dream of Electric Sheep)为菲利普·迪克所著科幻小说,电影《银翼杀手》根
MLPACK 是一个 C++ 的机器学习库,其重点是可伸缩性、速度和易用。 示例代码: #include
Mallet是专门用于机器学习方面的软件包,此软件包基于java。通过mallet工具,可以进行自然语言处理,文本分类,主题建模。文本聚类,信息抽取等。 项目主页: http://www.open-open
第9章 遗传算法 遗传算法提供了一种大致基于模拟进化的学习方法。其中的假设常被描述为二进制位串,位串的含义依赖于具体的应用。然而,假设也可以被描述为符号表达式或者甚至是计算机程序。对合适假设的搜索是
收集整理了机器学习相关的实验室、会议、研究院等的网站。 北京大学视觉与听觉信息处理实验室 北京邮电大学模式识别与智能系统学科 复旦大学智能信息处理开放实验室 IEEE Computer Society北京映象站点
机器学习是目前数据分析领域的一个热点内容,在平时的学习和生活中经常会用到各种各样的机器学习算法。实际上,基于Python、Java等的很多机器学习算法基本都被前人实现过很多次了。这些算法在网上可以找到