MLPACK 是一个 C++ 的机器学习库,其重点是可伸缩性、速度和易用。 示例代码: #include
Mallet是专门用于机器学习方面的软件包,此软件包基于java。通过mallet工具,可以进行自然语言处理,文本分类,主题建模。文本聚类,信息抽取等。 项目主页: http://www.open-open
第9章 遗传算法 遗传算法提供了一种大致基于模拟进化的学习方法。其中的假设常被描述为二进制位串,位串的含义依赖于具体的应用。然而,假设也可以被描述为符号表达式或者甚至是计算机程序。对合适假设的搜索是
收集整理了机器学习相关的实验室、会议、研究院等的网站。 北京大学视觉与听觉信息处理实验室 北京邮电大学模式识别与智能系统学科 复旦大学智能信息处理开放实验室 IEEE Computer Society北京映象站点
机器学习是目前数据分析领域的一个热点内容,在平时的学习和生活中经常会用到各种各样的机器学习算法。实际上,基于Python、Java等的很多机器学习算法基本都被前人实现过很多次了。这些算法在网上可以找到
GoLearn 是一款 Go 语言机器学习框架,示例代码: package main import ( "fmt" "github.com/sjwhitworth/golearn/base" "github
Conjecture 是 Esty 开发的构建机器学习模型框架,在 Hadoop 中使用 Scalding DSL 构建。Conjecture 的目的是允许静态统计模型在广泛的产品设置中作为可变组件。
机器学习算法库,涉及Topic Model、矩阵分解、最优化方法(Newton)、时间序列分析等常用挖掘功能. Makefile 项目可直接使用make命令来进行编译 Cmake 如果你碰巧安装了cmake,
机器学习的问题最终都会归结为对一个优化问题进行求解,而优化问题可以分为无约束优化问题和有约束优化问题。有约束的优化问题是指对于目标函数中的变量有显式约束条件的,比如0<=x<=100。无约束优化问题是
机器学会阅读将是人工智能在处理和理解人类语言进程中一个里程碑式的事件,是一个真正AI必须达到的标准。最近一家叫做 Maluuba 的科技公司,号称开发了目前最领先的机器阅读理解系统EpiReader[
数据分析和洞察,以 及企业级移动数据分析和挖掘的解决方案等产品和服务。随着各项业务快速发展,需要机器学习支撑的需求也越多越多,数据规模也越来越大,带来很大的挑战。而 且TalkingData作为一个新
com/article/13681.html Facebook开源先进的深度学习工具Torch Torch是一个从2002年就开始存在的开源库,其包含了一个用来构建和训练神经网络的框架。目前Facebook利用Torch正在开
在使用机器学习算法的过程中,针对不同场景需要不同的评价指标,在这里对常用的指标进行一个简单的汇总。 一、分类 1. 精确率与召回率 精确率与召回率多用于二分类问题。精确率(Precision)指的
PredictionIO 是一个开源的机器学习引擎,程序员用来使程序显示得具有预测性特点,例如个性化,推荐,内容显示。用PredictionIO你可以瞬间让你的程序增加以下特点:预测用户行为,提供个性
(machine learning in pure Python)是一个纯Python机器学习库。它可以迅速构建神经网络、条件随机场、逻辑回归等模型,使用inline-C优化,极易使用和扩展。 官方主页:
研究数据挖掘和机器学习有一段时间了,对数据挖掘来说,商用软件有SAS、 Clementine、Oracle数据挖掘组件等等;由于个人学习和版权、算法定制等问题,开源的数据挖掘与机器学习软件(库)目前也
上周,我去洛杉矶参加了一个机器学习的meetup,一位主讲是eHarmony公司(美国最大的婚恋交友网站之一,通过性格测试来进行婚恋匹配的模式——百度百科)的Jon Morra,他着重分享了机器学习(machine
Caffe :快速的神经网络框架 地址: https://github.com/BVLC/caffe CCV :以C语言为核心的现代计算机视觉库 地址: https://github.com/liuliu/ccv
T ) : C α ( T ) = C ( T ) + α | T | 参数 α > = 0 控制预测误差与模型复杂度的影响。 优化目标 在决策树的构造阶段,其优化目标是寻找最优的分裂属性
机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里IT经理网为您总结一下常见的机器学习算法,以供您在工作和学习中参考。 机器学习的算法很多。很多