如果你不是数学系的,就不要看这个了。 因为以下内容全都在证明机器学习的方法是有效的,你可以用机器学习来得到你想要的结果。然而对于编程或者使用这个方法的人来说,你只要放心大胆地用就行了。就像你知
【机器学习】Tensorflow学习笔记
希望这篇文章能对学习者有所启发。我在空白页前坐下,并且问自己了一个很难的问题:什么样的库、课程、论文和书籍对于机器学习的初学者来说是最好的。我必须把自己当做一个程序员和一个机器学习的初学者,站在这个角度去考虑最合适的资源。
这是一篇很难写的文章,因为我希望这篇文章能对学习者有所启发。我在空白页前坐下,并且问自己了一个很难的问题:什么样的库、课程、论文和书籍对于机器学习的初学者来说,是最好的。 文章里到底写什么、不写什
自从计算机被发明以来,人们就想知道它们能不能学习。如果我们理解了计算机学习的内在机制,即怎样使它们根据经验来自动提高,那么影响将是空前的。想象一下,在未来,计算机能从医疗记录中学习,获取治疗新疾病的最有效方法;住
事实上有许多的途径可以了解 机器学习 ,也有许多的资源例如书籍、公开课等可为所用,一些相关的比赛和工具也是你了解这个领域的好帮手。本文我将围绕这个话题,给出一些总结性的认识,并为你由 程序员 到机器学习高手的蜕变旅程中提供一些学习指引。
ganitha 包含一组算法用来实现在 Hadoop 平台是的各种规模的机器学习和统计分析。 项目主页: http://www.open-open.com/lib/view/home/1377775301651
和使用机器学习(简称ML)算法已经17年了。最近这几年机器学习开始受到广泛关注,所以人们经常问我:“什么是机器学习?你们用机器学习来做什么?” 我非常乐意回答这些问题,因为事实证明,机器学习的使用
也得到机器学习研究者的青睐,很多机器学习的算法库加入到了Python生态圈。这里介绍一些在发展的相关软件库,可以按图索骥,一窥机器学习的端奥。最近,像Google/IBM/MS都加入了机器学习的大阵营
在最近的学习中,看到一些有用的资源就记下来了,现在总结一下,欢迎补充! 机器视觉开源代码合集 计算机视觉算法与代码集锦 计算机视觉的一些测试数据集和源码站点 SIFT官网 SURF
在本篇文章中,我将对机器学习做个概要的介绍。本文的目的是能让即便完全不了解机器学习的人也能了解机器学习,并且上手相关的实践。这篇文档也算是 EasyPR开发的番外篇,从这里开始,必须对机器学习了解才能进一步
net/2016/01/31/机器学习之总结/ 出于文本归类和数据处理之需求,这段时间研究了下文本处理类的机器学习方面的东西。也快过年放假了,在此做一个总结和感受吧。 分词 正如绝大多数的科学研究一样,机器学习的算法
机器学习难,并不是因为数学难,而是因为选择什么工具及Debug难。快速有效Debug是现代机器学习中的必备技能,但机器学习的Debug相比普通程序要难很多:候选错误空间大、调试周期长。 机器学习已
本文汇编了一些机器学习领域的框架、库以及软件(按编程语言排序)。 C++ 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV —它提供C++, C, Python
不幸的是,现在的教育系统在教学上太事无巨细,因此很少给你机会独立学习。但是我们到底应该怎样去自学呢? Metacademy 2 是一个进行自学的很好的工具,目前主要提供机器学习和人工智能方面的知识。自学最令人兴奋的地方
Numpy和Scipy常常结合着使用,Python大多数机器学习库都依赖于这两个模块,绘图和可视化依赖于matplotlib模块,matplotlib的风格与matlab类似。 Python机器学习库非常多,而且大多数开源,主要有:
本文主要回顾下几个常用算法的适应场景和优缺点! 对于你的分类问题,你知道应该如何选择哪一个机器学习算法么?当然,如果你真的在乎精度(accuracy),最好的方法就是通过交叉验证(cross-v
这两年机器学习的概念一直很火,无人车、人脸识别、语音识别,似乎无所不能。但有一点被忽略了,“机器学习”算法只是众多算法的一种,和快速排序、red-black BST 一样,它有自己独特的应用场景,而且
机器学习Machine-Learning 主要内容 前言 课程列表 推荐学习路线 数学基础初级 程序语言能力 机器学习课程初级 数学基础中级 机器学习课程中级 推荐书籍列表 机器学习专项领域学习 前言
自然语言处理 ScalaNLP—机器学习和数值计算库的套装 Breeze —Scala用的数值处理库 Chalk—自然语言处理库。 FACTORIE—可部署的概率建