深度学习作为机器学习的一个分支,是近年来最热门同时也是发展最快的人工智能技术之一,相关学习资源包括免费公开教程和工具都极大丰富,同时这也为学习 深度学习技术 的IT人才带来选择上的困扰,Yerevan
深度学习拥有解决大部分机器学习和人工智能领域问题的潜力,可以用来解决诸如语音识别、三维物体识别和自然语言处理等领域的难题。本文介绍了深度学习在解决实际问题中存在的优势与缺点。 当你想进行预测的时候
html 当前人工智能之所以能够引起大家的兴奋和广泛关注,在很大程度上是源于深度学习的研究进展。这项机器学习技术为计算机视觉、语音识别和自然语言 处理带来了巨大的、激动人心的进步,也相应的带来
cn/2015/12/24/rwgfg/ 尽管深度学习能完成很多事情,但它到底是如何工作的,我们并不清楚。剑桥大学机器学习博士Yarin Gal提出,将研究自然科学的方法论用到深度学习中,或许可以解决这个问题。来看看他的心得吧!
1. 1深度学习在自然语言处理的应用张俊林 畅捷通股份有限公司 2014.10.3 2. 2大纲深度学习简介 基础问题:语言表示问题 Word Embedding 不同粒度语言单元的表示 字符/单字/单词/短语/句子/文档
Caffe是一个清晰而高效的深度学习框架,本文详细介绍了caffe的优势、架构,网络定义、各层定义,Caffe的安装与配置,解读了Caffe实现的图像分类模型AlexNet,并演示了CIFAR-10在caffe上进行训练与学习。
位于波士顿的数据科学团队正在利用前沿的工具和算法,通过对用户数据的分析来优化业务行为。 数据科学很大程度上依赖机器算法,它能帮助我们发现数据的特征。要想洞察互联网般规模的数据还是很有挑战的,因此能够大规模的运行算法成为了我们的关键需
C++实现的卷积神经网络训练库,正在集成、完善Q-learning模块和Python调用接口。
编者:本文来自搜狗资深研究员舒鹏在携程技术中心主办的 深度学习Meetup 中的主题演讲,介绍了深度学习在搜狗无线搜索广告中的应用及成果。关注携程技术中心微信公号ctriptech,可获知更多技术分享信息。
图像取证深度学习之风 不同与传统的图像取证算法,深度学习算法将特征提取和特征分类整合到一个网络结构中,实现了一种end-to-end的自动特征学习分类的有效算法。从当前的研究工作来看,深度学习应用于
深度学习具有极高的计算需求, 要对深度学习应用进行开发并商业化,就需要找到合适的硬件配置。目前,在开发用于深度学习应用的高效硬件平台这一领域,竞争十分激烈。本文将介绍具体的硬件要求,并讨论未来对深度学习硬件的展望。
GitHub 上最流行的 57 款深度学习项目(按 stars 排名)。 1.TensorFlow 使用数据流图计算可扩展机器学习问题 TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFlow
sat on the mat」: 然而,在实际应用中,我们希望学习模型能够在词汇量很大(10,000 字以上)的情况下进行学习。从这里能看到 使用「独热码」表示单词的效率问题 ——对这些词汇建模的任何神经网络的输入层至少都有
人类心脏是一台令人惊叹的机器,它能持续运转长达一个世纪而不失灵。测量心脏功能的关键方法之一是计算其 射血分数 ,即每搏输出量占心室舒张末期容积量的百分比。而测量这个指标的第一步依赖于对心脏图像心室的分割。
com/p/533832.html 编者注:深度学习火了,从任何意义上,大家谈论它的热衷程度,都超乎想象。但是,似乎很少有人提出不同的声音,说深度学习的火热,有可能是过度的繁荣,乃至不理性的盲从。而这次,有不同的想法出现了。
动的方式构建一个对话系统? 最近基于数据的自然语言对话技术取得了突破性的进展。我们发现,利用深度学习和大数据,可以很容易地构建一个单轮对话系统, 自动生成对话 ,并且取得惊人的好效果。比如,用5百
随着深度学习在计算机视觉、自然语言处理等领域取得的成果越来越显著,对深度学习的讨论越来越多。作为当下最热门的话题,从 2015 年至今,短短三年时间,谷歌、Facebook、微软等国外巨头,百度、小米
1. TensorFlow 使用数据流图计算可扩展机器学习问题 TensorFlow 是谷歌的第二代机器学习系统,按照谷歌所说,在某些基准测试中,TensorFlow 的表现比第一代的 DistBelief
深度学习是一门经验科学,许多基础设施的质量也在倍增。幸运的是,现在的开源生态系统可以使任何人建立不错的深度学习基础设施。 在这篇文章中,我们将讲述深度学习研究通常如何进行,介绍可选的对应基础设施以
在机器学习领域中今天最流行的词汇是 —— 深度学习。这是由 Geoff Hinton 提出的一项技术,Geoff 之前在微软研究院工作,现在在 Google。而其他计算机科学研究人员如 Yann LeCun