《Brief History of Machine Learning》 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM、Adaboost到随机森林、Deep Learning
Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络, 最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得。
36 Deep Learning是机器学习中一个非常接近AI的领域,其动机在于建立、模拟人脑进行分析学习的神经网络, 最近研究了机器学习中一些深度学习的相关知识,本文给出一些很有用的资料和心得。
比较全面的收集了机器学习的介绍文章,从感知机、神经网络、决策树、SVM、Adaboost到随机森林、Deep Learning。 《机器学习经典论文/survey合集》 介绍:看题目你已经知道了是什么内容
《Brief History of Machine Learning》 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机、神经网络、决策树、SVM、Adaboost到随机森林、Deep Learning
摘要: 深度学习可以完成需要高度抽象特征的人工智能任务,如语音识别、图像识别和检索、自然语言理解等。深层模型是包含多个隐藏层的人工神经网络,多层非线性结 构使其具备强大的特征表达能力和对复杂任务建模能
编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等。而且原文也会不定期的更新,望看到文章的朋友能够学到更多。 《Brief History of Machine Learning》
编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等。而且原文也会不定期的更新,望看到文章的朋友能够学到更多。 《Brief History of Machine Learning》
DeepDetect是C++实现的基于外部机器学习/深度学习库(目前是Caffe)的API。给出了图片训练(ILSVRC)和文本训练(基于字的情感分析,NIPS15)的样例,以及根据图片标签索引到El
面向机器视觉的深度学习资源汇总
learning较全面的入门介绍 19 浅谈Deep Learning的基本思想和方法 3 机器学习——深度学习(Deep Learning) 2 deep learning tutorials 3 一篇blog:deep
76398.html 深度学习及TensorFlow简介 深度学习目前已经被应用到图像识别,语音识别,自然语言处理,机器翻译等场景并取得了很好的行业应用效果。至今已有数种深度学习框架,如TensorF
com/cn/news/2015/12/ANN-Numenta 近来,深度学习成为一个流行词。有分析师认为,它会削弱现有机器学习方法的地位。实际上,深度学习并不是一个新概念,它是上世纪90年代就已经出现的 人工神经网络(ANN)
可熟练掌握深度学习。 难以置信? 四步使它成为可能。 欲了解更多,请往下看 Step 1: 学习机器学习基础 (可选,但强烈推荐) 开始于Andrew Ng的机器学习 机器学习 - 斯坦福大学
深度学习资源集合
这篇文章介绍了Docker与深度学习结合的例子。Docker的优势是解决了依赖的问题,方便分发个人工作成果;缺点是不直接支持GPU,需要开发者自己安装nvidia-docker。 Docker提供了一种将Linux
,同时对机器学习是如何随着时间缓慢发展的也有个直观的认识。 以下为正文: 本文我们来关注下三个非常相关的概念(深度学习、机器学习和模式识别),以及他们与2015年最热门的科技主题(机器人和人工智能)的联系。
摘要:机器学习无疑是当前数据分析领域的一个热点内容。很多人在平时的工作中都或多或少会用到机器学习的算法。这里我们将为您总结一下常见的机器学习算法,以供您在工作和学习中参考。 【编者按】机器学习的算法
摘要 : 深度学习可以完成需要高度抽象特征的人工智能任务,如语音识别、图像识别和检索、自然语言理解等。深层模型是包含多个隐藏层的人工神经网络,多层非线性结 构使其具备强大的特征表达能力和对复杂任务建模
专为机器学习初学者推荐的优质学习资源,帮助初学者快速入门。 这篇文章的确很难写,因为我希望它真正地对初学者有帮助。面前放着一张空白的纸,我坐下来问自己一个难题:面对一个对机器学习领域完全陌生的初学