关于 OpenSSL“心脏出血”漏洞的分析
#高危漏洞预警#昨日有国外黑客爆出OpenSSL存在一处内存泄漏漏洞,该漏洞可随机泄漏https服务器64k内存,内存中可能会含有程序源码、用户http原始请求、用户cookie甚至明文帐号密码等,已经有多个白帽给乌云君提供了漏洞影响证明,涉及大量互联网企业与电商,紧急!http://t.cn/8so46dR
原作者:Sean Cassidy 原作者推ter:@ex509 原作者博客:http://blog.existentialize.com 来源:http://blog.existentialize.com/diagnosis-of-the-openssl-heartbleed-bug.html
当我分析GnuTLS的漏洞的时候,我曾经说过,那不会是我们看到的最后一个TLS栈上的严重bug。然而我没想到这次OpenSSL的bug会如此严重。
OpenSSL“心脏出血”漏洞是一个非常严重的问题。这个漏洞使攻击者能够从内存中读取多达64 KB的数据。一些安全研究员表示:
无需任何特权信息或身份验证,我们就可以从我们自己的(测试机上)偷来X.509证书的私钥、用户名与密码、聊天工具的消息、电子邮件以及重要的商业文档和通信等数据。
这一切是如何发生的呢?让我们一起从代码中一探究竟吧。
0x01 Bug
请看ssl/dl_both.c,漏洞的补丁从这行语句开始:
1 2 3 4 5 6 7 | int dtls1_process_heartbeat(SSL *s) { unsignedchar*p = &s->s3->rrec.data[0], *pl; unsignedshorthbtype; unsignedintpayload; unsignedintpadding = 16;/* Use minimum padding */ |
一上来我们就拿到了一个指向一条SSLv3记录中数据的指针。结构体SSL3_RECORD的定义如下(译者注:结构体SSL3_RECORD不是SSLv3记录的实际存储格式。一条SSLv3记录所遵循的存储格式请参见下文分析):
1 2 3 4 5 6 7 8 9 10 11 | typedefstructssl3_record_st { inttype; /* type of record */ unsignedintlength; /* How many bytes available */ unsignedintoff; /* read/write offset into 'buf' */ unsignedchar*data; /* pointer to the record data */ unsignedchar*input; /* where the decode bytes are */ unsignedchar*comp; /* only used with decompression - malloc()ed */ unsignedlongepoch; /* epoch number, needed by DTLS1 */ unsignedcharseq_num[8];/* sequence number, needed by DTLS1 */ } SSL3_RECORD; |
每条SSLv3记录中包含一个类型域(type)、一个长度域(length)和一个指向记录数据的指针(data)。我们回头去看dtls1_process_heartbeat:
1 2 3 4 | /* Read type and payload length first */ hbtype = *p++; n2s(p, payload); pl = p; |
SSLv3记录的第一个字节标明了心跳包的类型。宏n2s从指针p指向的数组中取出前两个字节,并把它们存入变量payload中——这实际上是心跳包载荷的长度域(length)。注意程序并没有检查这条SSLv3记录的实际长度。变量pl则指向由访问者提供的心跳包数据。
这个函数的后面进行了以下工作:
1 2 3 4 5 6 7 8 9 | unsignedchar*buffer, *bp; intr; /* Allocate memory for the response, size is 1 byte * message type, plus 2 bytes payload length, plus * payload, plus padding */ buffer = OPENSSL_malloc(1 + 2 + payload + padding); bp = buffer; |
所以程序将分配一段由访问者指定大小的内存区域,这段内存区域最大为 (65535 + 1 + 2 + 16) 个字节。变量bp是用来访问这段内存区域的指针。
1 2 3 4 | /* Enter response type, length and copy payload */ *bp++ = TLS1_HB_RESPONSE; s2n(payload, bp); memcpy(bp, pl, payload); |
宏s2n与宏n2s干的事情正好相反:s2n读入一个16 bit长的值,然后将它存成双字节值,所以s2n会将与请求的心跳包载荷长度相同的长度值存入变量payload。然后程序从pl处开始复制 payload个字节到新分配的bp数组中——pl指向了用户提供的心跳包数据。最后,程序将所有数据发回给用户。那么Bug在哪里呢?
0x01a 用户可以控制变量payload和pl
如果用户并没有在心跳包中提供足够多的数据,会导致什么问题?比如pl指向的数据实际上只有一个字节,那么memcpy会把这条SSLv3记录之后的数据——无论那些数据是什么——都复制出来。
很明显,SSLv3记录附近有不少东西。
说实话,我对发现了OpenSSL“心脏出血”漏洞的那些人的声明感到吃惊。当我听到他们的声明时,我认为64 KB数据根本不足以推算出像私钥一类的数据。至少在x86上,堆是向高地址增长的,所以我认为对指针pl的读取只能读到新分配的内存区域,例如指针bp指向的区域。存储私钥和其它信息的内存区域的分配早于对指针pl指向的内存区域的分配,所以攻击者是无法读到那些敏感数据的。当然,考虑到现代malloc 的各种神奇实现,我的推断并不总是成立的。
当然,你也没办法读取其它进程的数据,所以“重要的商业文档”必须位于当前进程的内存区域中、小于64 KB,并且刚好位于指针pl指向的内存块附近。
研究者声称他们成功恢复了密钥,我希望能看到PoC。如果你找到了PoC,请联系我。
0x01b 漏洞修补
修复代码中最重要的一部分如下:
1 2 3 4 5 6 7 8 | /* Read type and payload length first */ if(1 + 2 + 16 > s->s3->rrec.length) return0;/* silently discard */ hbtype = *p++; n2s(p, payload); if(1 + 2 + payload + 16 > s->s3->rrec.length) return0;/* silently discard per RFC 6520 sec. 4 */ pl = p; |
这段代码干了两件事情:首先第一行语句抛弃了长度为0的心跳包,然后第二步检查确保了心跳包足够长。就这么简单。
0x02 前车之鉴
我们能从这个漏洞中学到什么呢?
我是C的粉丝。这是我最早接触的编程语言,也是我在工作中使用的第一门得心应手的语言。但是和之前相比,现在我更清楚地看到了C语言的局限性。
从GnuTLS漏洞和这个漏洞出发,我认为我们应当做到下面三条:
花钱请人对像OpenSSL这样的关键安全基础设施进行安全审计; 为这些库写大量的单元测试和综合测试; 开始在更安全的语言中编写替代品。
考虑到使用C语言进行安全编程的困难性,我不认为还有什么其他的解决方案。我会试着做这些,你呢?
作者简介:Sean是一位关于如何把事儿干好的软件工程师。现在他在Squadron工作。Squadron是一个专为SaaS应用程序准备的配置与发布管理工具。
测试版本的结果以及检测工具:
OpenSSL 1.0.1 through 1.0.1f (inclusive) are vulnerable OpenSSL 1.0.1g is NOT vulnerable OpenSSL 1.0.0 branch is NOT vulnerable OpenSSL 0.9.8 branch is NOT vulnerable
http://filippo.io/Heartbleed/
来自: http://drops.wooyun.org/papers/1381