大数据分析查询引擎Impala

jopen 9年前


Impala是Cloudera公司主导开发的新型查询系统,它提供SQL语义,能查询存储在Hadoop的HDFS和HBase中的PB级大数 据。已有的Hive系统虽然也提供了SQL语义,但由于Hive底层执行使用的是MapReduce引擎,仍然是一个批处理过程,难以满足查询的交互性。 相比之下,Impala的最大特点也是最大卖点就是它的快速。在介绍Impala之前需要先介绍Google的Dremel系统,因为Impala最开始 是参照 Dremel系统进行设计的。

Dremel是Google的交互式数据分析系统,它构建于Google的GFS(Google File System)等系统之上,支撑了Google的数据分析服务BigQuery等诸多服务。Dremel的技术亮点主要有两个:一是实现了嵌套型数据的列 存储;二是使用了多层查询树,使得任务可以在数千个节点上并行执行和聚合结果。列存储在关系型数据库中并不陌生,它可以减少查询时处理的数据量,有效提升 查询效率。Dremel的列存储的不同之处在于它针对的并不是传统的关系数据,而是嵌套结构的数据。Dremel可以将一条条的嵌套结构的记录转换成列存 储形式,查询时根据查询条件读取需要的列,然后进行条件过滤,输出时再将列组装成嵌套结构的记录输出,记录的正向和反向转换都通过高效的状态机实现。另 外,Dremel的多层查询树则借鉴了分布式搜索引擎的设计,查询树的根节点负责接收查询,并将查询分发到下一层节点,底层节点负责具体的数据读取和查询 执行,然后将结果返回上层节点。

大数据分析查询引擎Impala

Impala是Cloudera在受到Google的Dremel启发下开发的实时交互SQL大数据查询工具,Impala没有再使用缓慢的 Hive+MapReduce批处理,而是通过使用与商用并行关系数据库中类似的分布式查询引擎(由Query Planner、Query Coordinator和Query Exec Engine三部分组成),可以直接从HDFS或HBase中用SELECT、JOIN和统计函数查询数据,从而大大降低了延迟。Impala其实就是 Hadoop的Dremel,Impala使用的列存储格式是Parquet。Parquet实现了Dremel中的列存储,未来还将支持 Hive并添加字典编码、游程编码等功能。Impala的系统架构如图所示。Impala使用了Hive的SQL接口(包括SELECT、 INSERT、Join等操作),但目前只实现了Hive的SQL语义的子集(例如尚未对UDF提供支持),表的元数据信息存储在Hive的 Metastore中。StateStore是Impala的一个子服务,用来监控集群中各个节点的健康状况,提供节点注册、错误检测等功能。 Impala在每个节点运行了一个后台服务Impalad,Impalad用来响应外部请求,并完成实际的查询处理。Impalad主要包含Query Planner、Query Coordinator和Query Exec Engine三个模块。QueryPalnner接收来自SQL APP和ODBC的查询,然后将查询转换为许多子查询,Query Coordinator将这些子查询分发到各个节点上,由各个节点上的Query Exec Engine负责子查询的执行,最后返回子查询的结果,这些中间结果经过聚集之后最终返回给用户。

Impala主要由Impalad, State Store和CLI组成。

大数据分析查询引擎Impala

Impalad

与DataNode运行在同一节点上,由Impalad进程表示,它接收客户端的查询请求(接收查询请求的Impalad为 Coordinator,Coordinator通过JNI调用java前端解释SQL查询语句,生成查询计划树,再通过调度器把执行计划分发给具有相应 数据的其它Impalad进行执行),读写数据,并行执行查询,并把结果通过网络流式的传送回给Coordinator,由Coordinator返回给 客户端。同时Impalad也与State Store保持连接,用于确定哪个Impalad是健康和可以接受新的工作。在Impalad中启动三个ThriftServer: beeswax_server(连接客户端),hs2_server(借用Hive元数据), be_server(Impalad内部使用)和一个ImpalaServer服务。每个impalad实例会接收、规划并调节来自ODBC或 Impala Shell等客户端的查询。每个impalad实例会充当一个Worker,处理由其它impalad实例分发出来的查询片段(query fragments)。客户端可以随便连接到任意一个impalad实例,被连接的impalad实例将充当本次查询的协调者(Ordinator),将 查询分发给集群内的其它impalad实例进行并行计算。当所有计算完毕时,其它各个impalad实例将会把各自的计算结果发送给充当 Ordinator的impalad实例,由这个Ordinator实例把结果返回给客户端。每个impalad进程可以处理多个并发请求。

Impala State Store

跟踪集群中的Impalad的健康状态及位置信息,由statestored进程表示,它通过创建多个线程来处理Impalad的注册订阅和与各 Impalad保持心跳连接,各Impalad都会缓存一份State Store中的信息,当State Store离线后(Impalad发现State Store处于离线时,会进入recovery模式,反复注册,当State Store重新加入集群后,自动恢复正常,更新缓存数据)因为Impalad有State Store的缓存仍然可以工作,但会因为有些Impalad失效了,而已缓存数据无法更新,导致把执行计划分配给了失效的Impalad,导致查询失败。

  • 用于协调各个运行impalad的实例之间的信息关系,Impala正是通过这些信息去定位查询请求所要的数据。换句话说,state store的作用主要为跟踪各个impalad实例的位置和状态,让各个impalad实例以集群的方式运行起来。
  • 与 HDFS的NameNode不一样,虽然State Store一般只安装一份,但一旦State Store挂掉了,各个impalad实例却仍然会保持集群的方式处理查询请求,只是无法将各自的状态更新到State Store中,如果这个时候新加入一个impalad实例,则新加入的impalad实例不为现有集群中的其他impalad实例所识别(事实上,经笔者 测试,如果impalad启动在statestored之后,根本无法正常启动,因为impalad启动时是需要指定statestored的主机信息 的)。然而,State Store一旦重启,则所有State Store所服务的各个impalad实例(包括state store挂掉期间新加入的impalad实例)的信息(由impalad实例发给state store)都会进行重建。

CLI (Impala shell)

提供给用户查询使用的命令行工具(Impala Shell使用python实现),同时Impala还提供了Hue,JDBC, ODBC使用接口。该客户端工具提供一个交互接口,供使用者发起数据查询或管理任务,比如连接到impalad。这些查询请求会传给ODBC这个标准查询 接口。说白了,就是一个命令行客户端。

与Hive的关系

Impala与Hive都是构建在Hadoop之上的数据查询工具各有不同的侧重适应面,但从客户端使用来看Impala与Hive有很多的共同 之处,如数据表元数据、ODBC/JDBC驱动、SQL语法、灵活的文件格式、存储资源池等。Impala与Hive在Hadoop中的关系下图所示。 Hive适合于长时间的批处理查询分析,而Impala适合于实时交互式SQL查询,Impala给数据分析人员提供了快速实验、验证想法的大数据分析工 具。可以先使用hive进行数据转换处理,之后使用Impala在Hive处理后的结果数据集上进行快速的数据分析。

大数据分析查询引擎Impala

SQL 支持度:

支持SQL92中的大部分select语句, 以及SQL2003标准中的分析函数。 不支持DELETE和UPDATE, 但是支持批量装载数据(insert into select, LOAD DATA) 和批量删除数据(drop partition)。除此之外, 用户也可直接操作HDFS文件实现数据装载和清理。

查询执行

impalad分为frontend和backend两个层次, frondend用java实现(通过JNI嵌入impalad), 负责查询计划生成, 而backend用C++实现, 负责查询执行。

大数据分析查询引擎Impala

frontend生成查询计划分为两个阶段:(1)生成单机查询计划,单机执行计划与关系数据库执行计划相同,所用查询优化方法也类似。(2)生成分布式查询计划。 根据单机执行计划, 生成真正可执行的分布式执行计划,降低数据移动, 尽量把数据和计算放在一起。

大数据分析查询引擎Impala

上图是SQL查询例子, 该SQL的目标是在三表join的基础上算聚集, 并按照聚集列排序取topN。 impala的查询优化器支持代价模型: 利用表和分区的cardinality,每列的distinct值个数等统计数据, impala可估算执行计划代价, 并生成较优的执行计划。 上图左边是frontend查询优化器生成的单机查询计划, 与传统关系数据库不同, 单机查询计划不能直接执行, 必须转换成如图右半部分所示的分布式查询计划。 该分布式查询计划共分成6个segment(图中彩色无边框圆角矩形), 每个segment是可以被单台服务器独立执行的计划子树。

impala支持两种分布式join方式, 表广播和哈希重分布:表广播方式保持一个表的数据不动, 将另一个表广播到所有相关节点(图中t3); 哈希重分布的原理是根据join字段哈希值重新分布两张表数据(譬如图中t1和t2)。分布式计划中的聚集函数分拆为两个阶段执行。第一步针对本地数据进 行分组聚合(Pre-AGG)以降低数据量, 并进行数据重分步, 第二步, 进一步汇总之前的聚集结果(mergeAgg)计算出最终结果。 与聚集函数类似, topN也是分为两个阶段执行, (1)本地排序取topN,以降低数据量; (2) merge sort得到最终topN结果。

Backend从frontend接收plan segment并执行, 执行性能非常关键,impala采取的查询性能优化措施有

  • 向量执行。 一次getNext处理一批记录, 多个操作符可以做pipeline。
  • LLVM编译执行, CPU密集型查询效率提升5倍以上。
  • IO本地化。 利用HDFS short-circuit local read功能,实现本地文件读取
  • Parquet列存,相比其他格式性能最高提升5倍。

资源管理

impala通常与MR等离线任务运行在一个集群上, 通过YARN统一管理资源, 如何同时满足交互式查询和离线查询两种需求具有较大挑战性。 YARN通过全局唯一的Resource Mananger调度资源, 好处是RM拥有整个集群全局信息,能做出更好调度决策, 缺点是资源分配的性能不足。 Impala每个查询都需要分配资源, 当每秒查询数上千时, YARN资源分配的响应时间变的很长, 影响到查询性能。 目前通过两个措施解决这个问题:(1)引入快速、非集中式的查询准入机制, 控制查询并发度。(2)LLAM(low latency application master)通过缓存资源, 批量分配,增量分配等方式实现降低资源分配延时

Impala 相对于Hive所使用的优化技术

  • 没有使用MapReduce进行并行计算,虽然MapReduce是非常好的并行计算框架,但它更多的面向批处理模式,而不是面向交互式的 SQL执行。与MapReduce相比:Impala把整个查询分成一执行计划树,而不是一连串的MapReduce任务,在分发执行计划 后,Impala使用拉式获取数据的方式获取结果,把结果数据组成按执行树流式传递汇集,减少的了把中间结果写入磁盘的步骤,再从磁盘读取数据的开销。 Impala使用服务的方式避免每次执行查询都需要启动的开销,即相比Hive没了MapReduce启动时间。
  • 使用LLVM产生运行代码,针对特定查询生成特定代码,同时使用Inline的方式减少函数调用的开销,加快执行效率。
  • 充分利用可用的硬件指令(2)。
  • 更好的IO调度,Impala知道数据块所在的磁盘位置能够更好的利用多磁盘的优势,同时Impala支持直接数据块读取和本地代码计算checksum。
  • 通过选择合适的数据存储格式可以得到最好的性能(Impala支持多种存储格式)。
  • 最大使用内存,中间结果不写磁盘,及时通过网络以stream的方式传递。

Impala 与Hive的异同

相同点:

  • 数据存储:使用相同的存储数据池都支持把数据存储于HDFS, HBase。
  • 元数据:两者使用相同的元数据。
  • SQL解释处理:比较相似都是通过词法分析生成执行计划。

不同点:

执行计划:

  • Hive: 依赖于MapReduce执行框架,执行计划分成 map->shuffle->reduce->map->shuffle->reduce…的模型。如果一个Query会 被编译成多轮MapReduce,则会有更多的写中间结果。由于MapReduce执行框架本身的特点,过多的中间过程会增加整个Query的执行时间。
  • Impala: 把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个Impalad执行查询,而不用像Hive那样把它组合成管道型的 map->reduce模式,以此保证Impala有更好的并发性和避免不必要的中间sort与shuffle。

数据流:

  • Hive: 采用推的方式,每一个计算节点计算完成后将数据主动推给后续节点。
  • Impala: 采用拉的方式,后续节点通过getNext主动向前面节点要数据,以此方式数据可以流式的返回给客户端,且只要有1条数据被处理完,就可以立即展现出来,而不用等到全部处理完成,更符合SQL交互式查询使用。

内存使用:

  • Hive: 在执行过程中如果内存放不下所有数据,则会使用外存,以保证Query能顺序执行完。每一轮MapReduce结束,中间结果也会写入HDFS中,同样由于MapReduce执行架构的特性,shuffle过程也会有写本地磁盘的操作。
  • Impala: 在遇到内存放不下数据时,当前版本0.1是直接返回错误,而不会利用外存,以后版本应该会进行改进。这使用得Impala目前处理Query会受到一定的 限制,最好还是与Hive配合使用。Impala在多个阶段之间利用网络传输数据,在执行过程不会有写磁盘的操作(insert除外)。

调度:

  • Hive: 任务调度依赖于Hadoop的调度策略。
  • Impala: 调度由自己完成,目前只有一种调度器simple-schedule,它会尽量满足数据的局部性,扫描数据的进程尽量靠近数据本身所在的物理机器。调度器 目前还比较简单,在SimpleScheduler::GetBackend中可以看到,现在还没有考虑负载,网络IO状况等因素进行调度。但目前 Impala已经有对执行过程的性能统计分析,应该以后版本会利用这些统计信息进行调度吧。

容错:

  • Hive: 依赖于Hadoop的容错能力。
  • Impala: 在查询过程中,没有容错逻辑,如果在执行过程中发生故障,则直接返回错误(这与Impala的设计有关,因为Impala定位于实时查询,一次查询失败, 再查一次就好了,再查一次的成本很低)。但从整体来看,Impala是能很好的容错,所有的Impalad是对等的结构,用户可以向任何一个 Impalad提交查询,如果一个Impalad失效,其上正在运行的所有Query都将失败,但用户可以重新提交查询由其它Impalad代替执行,不 会影响服务。对于State Store目前只有一个,但当State Store失效,也不会影响服务,每个Impalad都缓存了State Store的信息,只是不能再更新集群状态,有可能会把执行任务分配给已经失效的Impalad执行,导致本次Query失败。

适用面:

  • Hive: 复杂的批处理查询任务,数据转换任务。
  • Impala:实时数据分析,因为不支持UDF,能处理的问题域有一定的限制,与Hive配合使用,对Hive的结果数据集进行实时分析。

Impala 的优缺点

优点:

  • 支持SQL查询,快速查询大数据。
  • 可以对已有数据进行查询,减少数据的加载,转换。
  • 多种存储格式可以选择(Parquet, Text, Avro, RCFile, SequeenceFile)。
  • 可以与Hive配合使用。

缺点:

  • 不支持用户定义函数UDF。
  • 不支持text域的全文搜索。
  • 不支持Transforms。
  • 不支持查询期的容错。
  • 对内存要求高。

在Cloudera的测试中,Impala的查询效率比Hive有数量级的提升。从技术角度上来看,Impala之所以能有好的性能,主要有以下几方面的原因。

  • Impala不需要把中间结果写入磁盘,省掉了大量的I/O开销。
  • 省掉了MapReduce作业启动的开销。MapReduce启动task的速度很慢(默认每个心跳间隔是3秒钟),Impala直接通过相应的服务进程来进行作业调度,速度快了很多。
  • Impala完全抛弃了MapReduce这个不太适合做SQL查询的范式,而是像Dremel一样借鉴了MPP并行数据库的思想另起炉灶,因此可做更多的查询优化,从而省掉不必要的shuffle、sort等开销。
  • 通过使用LLVM来统一编译运行时代码,避免了为支持通用编译而带来的不必要开销。
  • 用C++实现,做了很多有针对性的硬件优化,例如使用SSE指令。
  • 使用了支持Data locality的I/O调度机制,尽可能地将数据和计算分配在同一台机器上进行,减少了网络开销。

虽然Impala是参照Dremel来实现的,但它也有一些自己的特色,例如Impala不仅支持Parquet格式,同时也可以直接处理文本、 SequenceFile等Hadoop中常用的文件格式。另外一个更关键的地方在于,Impala是开源的,再加上Cloudera在Hadoop领域 的领导地位,其生态圈有很大可能会在将来快速成长。

可以预见,在不久的未来,Impala很可能像之前的Hadoop和Hive一样在大数 据处理领域大展拳脚。Cloudera自己也说期待未来Impala能完全取代Hive。当然,用户从Hive上迁移到Impala上来是需要时间的。需 要说明的是,Impala并不是用来取代已有的MapReduce系统,而是作为MapReduce的一个强力补充。总的来说,Impala适合用来处理 输出数据适中或比较小的查询,而对于大数据量的批处理任务,MapReduce依然是更好的选择。另外一个消息是,Cloudera里负责Impala的 架构师Marcel Komacker就曾在Google负责过F1系统的查询引擎开发,可见Google确实为大数据的流行出钱出力。

Impala 与Shark,Drill等的比较

开源组织Apache也发起了名为Drill的项目来实现Hadoop上的Dremel,目前该项目正在开发当中,相关的文档和代码还不多,可以 说暂时还未对Impala构成足够的威胁。从Quora上的问答来看,Cloudera有7-8名工程师全职在Impala项目上,而相比之下Drill 目前的动作稍显迟钝。具体来说,截止到2012年10月底,Drill的代码库里实现了query parser, plan parser,及能对JSON格式的数据进行扫描的plan evaluator;而Impala同期已经有了一个比较完毕的分布式query execution引擎,并对HDFS和HBase上的数据读入,错误检测,INSERT的数据修改,LLVM动态翻译等都提供了支持。当然,Drill 作为Apache的项目,从一开始就避免了某个vendor的一家独大,而且对所有Hadoop流行的发行版都会做相应的支持,不像Impala只支持 Cloudera自己的发行版CDH。从长远来看,谁会占据上风还真不一定。

除此之外,加州伯克利大学AMPLab也开发了名为Shark的大数据分析系统。从长远目标来看,Shark想成为一个既支持大数据SQL查询, 又能支持高级数据分析任务的一体化数据处理系统。从技术实现的角度上来看,Shark基于Scala语言的算子推导实现了良好的容错机制,因此对失败了的 长任务和短任务都能从上一个“快照点”进行快速恢复。相比之下,Impala由于缺失足够强大的容错机制,其上运行的任务一旦失败就必须“从头来过”,这 样的设计必然会在性能上有所缺失。而且Shark是把内存当作第一类的存储介质来做的系统设计,所以在处理速度上也会有一些优势。实际上,AMPLab最 近对Hive,Impala,Shark及Amazon采用的商业MPP数据库Redshift进行了一次对比试验,在Scan Query,Aggregation Query和Join Query三种类型的任务中对它们进行了比较。图2就是AMPLab报告中Aggregation Query的性能对比。在图中我们可以看到,商业版本的Redshift的性能是最好的, Impala和Shark则各有胜负,且两者都比Hive的性能高出了一大截。

大数据分析查询引擎Impala

其实对大数据分析的项目来说,技术往往不是最关键的。例如Hadoop中的MapReduce和HDFS都是源于Google,原创性较少。事实 上,开源项目的生态圈,社区,发展速度等,往往在很大程度上会影响Impala和Shark等开源大数据分析系统的发展。就像Cloudera一开始就决 定会把Impala开源,以期望利用开源社区的力量来推广这个产品;Shark也是一开始就开源了出来,更不用说Apache的Drill更是如此。说到 底还是谁的生态系统更强的问题。技术上一时的领先并不足以保证项目的最终成功。虽然最后那一款产品会成为事实上的标准还很难说,但是,我们唯一可以确定并 坚信的一点是,大数据分析将随着新技术的不断推陈出新而不断普及开来,这对用户永远都是一件幸事。举个例子,如果读者注意过下一代 Hadoop(YARN)的发展的话就会发现,其实YARN已经支持MapReduce之外的计算范式(例如Shark,Impala等),因此将来 Hadoop将可能作为一个兼容并包的大平台存在,在其上提供各种各样的数据处理技术,有应对秒量级查询的,有应对大数据批处理的,各种功能应有尽有,满 足用户各方面的需求。

未来展望

其实除了Impala,Shark,Drill这样的开源方案外,像Oracle,EMC等传统厂商也没在坐以待毙等着自己的市场被开源软件侵 吞。像EMC就推出了HAWQ系统,并号称其性能比之Impala快上十几倍,而前面提到的Amazon的Redshift也提供了比Impala更好的 性能。虽然说开源软件因为其强大的成本优势而拥有极其强大的力量,但是传统数据库厂商仍会尝试推出性能、稳定性、维护服务等指标上更加强大的产品与之进行 差异化竞争,并同时参与开源社区、借力开源软件来丰富自己的产品线、提升自己的竞争力,并通过更多的高附加值服务来满足某些消费者需求。毕竟,这些厂商往 往已在并行数据库等传统领域积累了大量的技术和经验,这些底蕴还是非常深厚的。甚至现在还有像NuoDB(一个创业公司)这样号称即支持ACID,又有 Scalability的NewSQL系统出来。总的来看,未来的大数据分析技术将会变得越来越成熟、越来越便宜、越来越易用;相应的,用户将会更容易更 方便地从自己的大数据中挖掘出有价值的商业信息。

参考资料

  • http://impala.io/