看了这篇德勤报告,你的人工智能与认知技术常识就小学毕业了

jopen 10年前

看了这篇德勤报告,你的人工智能与认知技术常识就小学毕业了

        微信公众号:机器之心(ID:almosthuman2014)

        国内对于人工智能的讨论大多是不成体系的碎片式,很难从中深入了解人工智能的发展脉络和技术体系,也很难有实际借鉴意义。德勤 DUP 近期发布了一份报告,对人工智能的历史、核心技术和应用情况进行了详细说明,尤其是其中重要的认知技术。这份报告将有助于我们对人工智能和认知技术进行深入了解,也有助于各行业的公司考量人工智能应用的实际价值。

        本报告由机器之心翻译,欢迎关注微信号:机器之心(ID:almosthuman2014)。

        一、概述

        近几年各界对人工智能的兴趣激增,自 2011 年以来,开发与人工智能相关的产品和技术并使之商业化的公司已获得超过总计 20 亿美元的风险投资,而科技巨头更是投资数十亿美元收购那些人工智能初创公司。相关报道铺天盖地,而巨额投资、计算机导致失业等问题也开始浮现,计算机比人 更加聪明并有可能威胁到人类生存这类论断更是被媒体四处引用并引发广泛关注。

  • IBM 承诺拨出 10 亿美元来使他们的认知计算平台 Watson 商业化。
  • 谷歌在最近几年里的投资主要集中在人工智能领域,比如收购了 8 个机器人公司和 1 个机器学习公司。
  • 非死book 聘用了人工智能学界泰斗 Yann LeCun 来创建自己的人工智能实验室,期望在该领域获得重大突破。
  • 牛津大学的研究人员发表了一篇报告表明,美国大约 47% 的工作因为机器认知技术自动化而变得岌岌可危。
  • 纽约时报畅销书《The Second Machine Age》论断,数字科技和人工智能带来巨大积极改变的时代已经到来,但是随之而来的也有引发大量失业等负面效应。
  • 硅谷创业家 Elon Musk 则通过不断投资的方式来保持对人工智能的关注。他甚至认为人工智能的危险性超过核武器。
  • 著名理论物理学家 Stephen Hawking 认为,如果成功创造出人工智能则意味着人类历史的终结,“除非我们知道如何规避风险。”

        即便有如此多炒作,但人工智能领域却也不乏显著的商业行为,这些活动已经或者即将对各个行业和组织产生影响。商业领袖需要透彻理解人工智能的含义以及发展趋势。

        二、人工智能与认知科技

        揭秘人工智能的首要步骤就是定义专业术语,勾勒历史,同时描述基础性的核心技术。

        1、人工智能的定义

        人工智能领域苦于存在多种概念和定义,有的太过有的则不够。作为该领域创始人之一的 Nils Nilsson 先生写到:“人工智能缺乏通用的定义。” 一本如今已经修订三版的权威性人工智能教科书给出了八项定义,但书中并没有透露其作者究竟倾向于哪种定义。对于我们来说,一种实用的定义即为——人工智能 是对计算机系统如何能够履行那些只有依靠人类智慧才能完成的任务的理论研究。例如,视觉感知、语音识别、在不确定条件下做出决策、学习、还有语言翻译等。 比起研究人类如何进行思维活动,从人类能够完成的任务角度对人工智能进行定义,而非人类如何思考,在当今时代能够让我们绕开神经机制层面对智慧进行确切定 义从而直接探讨它的实际应用。值得一提的是,随着计算机为解决新任务挑战而升级换代并推而广之,人们对那些所谓需要依靠人类智慧才能解决的任务的定义门槛 也越来越高。所以,人工智能的定义随着时间而演变,这一现象称之为“人工智能效应”,概括起来就是“人工智能就是要实现所有目前还无法不借助人类智慧才能 实现的任务的集合。”

        2、人工智能的历史

        人工智能并不是一个新名词。实际上,这个领域在 20 世纪 50 年代就已经开始启动,这段探索的历史被称为“喧嚣与渴望、挫折与失望交替出现的时代”——最近给出的一个较为恰当的评价。

        20 世纪 50 年代明确了人工智能要模拟人类智慧这一大胆目标,从此研究人员开展了一系列贯穿 20 世纪 60 年代并延续到 70 年代的研究项目,这些项目表明,计算机能够完成一系列所本只属于人类能力范畴之内的任务,例如证明定理、求解微积分、通过规划来响应命令、履行物理动作, 甚至是模拟心理学家、谱曲这样的活动。

        但是,过分简单的算法、匮乏的难以应对不确定环境(这种情形在生活中无处不在)的理论,以及计算能力的限制严重阻碍了我们使用人工智能来解决更加困难和多样的问题。伴随着对缺乏继续努力的失望,人工智能于 20 世纪 70 年代中期逐渐淡出公众视野。

        20 世纪 80 年代早期,日本发起了一个项目,旨在开发一种在人工智能领域处于领先的计算机结构。西方开始担心会在这个领域输给日本,这种焦虑促使他们决定重新开始对人 工智能的投资。20 世纪 80 年代已经出现了人工智能技术产品的商业供应商,其中一些已经上市,例如 Intellicorp、Symbolics、和 Teknowledge。

        20 世纪 80 年代末,几乎一半的“财富 500 强”都在开发或使用“专家系统”,这是一项通过对人类专家的问题求解能力进行建模,来模拟人类专家解决该领域问题的人工智能技术。

        对于专家系统潜力的过高希望彻底掩盖了它本身的局限性,包括明显缺乏常识、难以捕捉专家的隐性知识、建造和维护大型系统这项工作的复杂性和成本,当这一点被越来越多的人所认识到时,人工智能研究再一次脱离轨道。

        20 世纪 90 年代在人工智能领域的技术成果始终处于低潮,成果寥寥。反而是神经网络、遗传算法等科技得到了新的关注,这一方面是因为这些技术避免了专家系统的若干限制,另一方面是因为新算法让它们运行起来更加高效。

        神经网络的设计受到了大脑结构的启发。遗传算法的机制是,首先迭代生成备选解决方案,然后剔除最差方案,最后通过引入随机变量来产生新的解决方案,从而“进化”出解决问题的最佳方案。

        3、人工智能进步的催化剂

        截止到 21 世纪前 10 年的后期,出现了一系列复兴人工智能研究进程的要素,尤其是一些核心技术。下面将对这些重要的因素和技术进行详细说明。

        1)摩尔定律

        在价格、体积不变的条件下,计算机的计算能力可以不断增长。这就是被人们所熟知的摩尔定律,它以 Intel 共同创办人 Gordon Moore 命名。Gordon Moore 从各种形式的计算中获利,包括人工智能研究人员使用的计算类型。数年以前,先进的系统设计只能在理论上成立但无法实现,因为它所需要的计算机资源过于昂贵 或者计算机无法胜任。今天,我们已经拥有了实现这些设计所需要的计算资源。举个梦幻般的例子,现在最新一代微处理器的性能是 1971 年第一代单片机的 400 万倍。

        2)大数据

        得益于互联网、社交媒体、移动设备和廉价的传感器,这个世界产生的数据量急剧增加。随着对这些数据的价值的不断认识,用来管理和分析数据的新技 术也得到了发展。大数据是人工智能发展的助推剂,这是因为有些人工智能技术使用统计模型来进行数据的概率推算,比如图像、文本或者语音,通过把这些模型暴 露在数据的海洋中,使它们得到不断优化,或者称之为“训练”——现在这样的条件随处可得。

        3)互联网和云计算

        和大数据现象紧密相关,互联网和云计算可以被认为是人工智能基石有两个原因,第一,它们可以让所有联网的计算机设备都能获得海量数据。这些数据 是人们推进人工智能研发所需要的,因此它可以促进人工智能的发展。第二,它们为人们提供了一种可行的合作方式——有时显式有时隐式——来帮助人工智能系统 进行训练。比如,有些研究人员使用类似 Mechanical Turk 这样基于云计算的众包服务来雇佣成千上万的人来描绘数字图像。这就使得图像识别算法可以从这些描绘中进行学习。谷歌翻译通过分析用户的反馈以及使用者的无 偿贡献来提高它自动翻译的质量。

        4)新算法

        算法是解决一个设计程序或完成任务的路径方法。最近几年,新算法的发展极大提高了机器学习的能力,这些算法本身很重要,同时也是其他技术的推动 者,比如计算机视觉(这项科技将会在后文描述)。机器学习算法目前被开源使用,这种情形将促成更大进步,因为在开源环境下开发人员可以补足和增强彼此的工 作。

        4、认知技术

        我们将区分人工智能领域和由此延伸的各项技术。大众媒体将人工智能刻画为跟人一样聪明的或比人更聪明的计算机的来临。而各项技术则在以往只有人能做到的特定任务上面表现得越来越好。我们称这些技术为认知技术(下图),认知技术是人工智能领域的产物,它们能完成以往只有人能够完成的任务。而它们正是商业和公共部门的领导者应该关注的。下面我们将介绍几个最重要的认知技术,它们正被广泛采纳并进展迅速,也获得大量投资。

看了这篇德勤报告,你的人工智能与认知技术常识就小学毕业了

        1)计算机视觉

        是指计算机从图像中识别出物体、场景和活动的能力。计算机视觉技术运用由图像处理操作及其他技术所组成的序列来将图像分析任务分解为便于管理的 小块任务。比如,一些技术能够从图像中检测到物体的边缘及纹理。分类技术可被用作确定识别到的特征是否能够代表系统已知的一类物体。

        计算机视觉有着广泛应用。其中包括,医疗成像分析被用来提高疾病的预测、诊断和治疗;人脸识别被 非死book 用来自动识别照片里的人物;在安防及监控领域被用来指认嫌疑人;在购物方面,消费者现在可以用智能手机拍摄下产品以获得更多购买选择。

        机器视觉作为一个相关学科,泛指在工业自动化领域的视觉应用。在这些应用里,计算机在高度受限的工厂环境里识别诸如生产零件一类的物体,因此相 对于寻求在非受限环境里操作的计算机视觉来说目标更为简单。计算机视觉是一个正在进行中的研究,而机器视觉则是“已经解决的问题”,是系统工程方面的课题 而非研究层面的课题。因为应用范围的持续扩大,计算机视觉领域的初创公司自 2011 年起已经吸引了数亿美元的风投资本。

        2)机器学习

        指的是计算机系统无需遵照显式的程序指令而只是依靠暴露在数据中来提升自身性能的能力。其核心在于,机器学习是从数据中自动发现模式,模式一旦 被发现便可用于做预测。比如,给予机器学习系统一个关于交易时间、商家、地点、价格及交易是否正当等信用卡交易信息的数据库,系统就会学习到可用来预测信 用卡欺诈的模式。处理的交易数据越多,预测就会越好。

        机器学习的应用范围非常广泛,针对那些产生庞大数据的活动,它几乎拥有改进一切性能的潜力。除了欺诈甄别之外,这些活动还包括销售预测、库存管 理、石油和天然气勘探、以及公共卫生。机器学习技术在其他的认知技术领域也扮演着重要角色,比如计算机视觉,它能在海量图像中通过不断训练和改进视觉模型 来提高其识别对象的能力。现如今,机器学习已经成为认知技术中最炙手可热的研究领域之一,在 2011-2014 年中这段时间内就已吸引了近十亿美元的风险投资。谷歌也在 2014 年斥资 4 亿美金收购 Deepmind 这家研究机器学习技术的公司。

        3)自然语言处理

        是指计算机拥有的人类般文本处理的能力,比如,从文本中提取意义,甚至从那些可读的、风格自然、语法正确的文本中自主解读出含义。一个自然语言 处理系统并不了解人类处理文本的方式,但是它却可以用非常复杂与成熟的手段巧妙处理文本,例如自动识别一份文档中所有被提及的人与地点;识别文档的核心议 题;或者在一堆仅人类可读的合同中,将各种条款与条件提取出来并制作成表。以上这些任务通过传统的文本处理软件根本不可能完成,后者仅能针对简单的文本匹 配与模式进行操作。请思考一个老生常谈的例子,它可以体现自然语言处理面临的一个挑战。在句子“光阴似箭(Time flies like an arrow)”中每一个单词的意义看起来都很清晰,直到系统遇到这样的句子“果蝇喜欢香蕉(Fruit flies like a banana)”,用“水果(fruit)”替代了“时间(time)”,并用“香蕉(banana)”替代“箭(arrow)”,就改变了“飞逝/飞着 的(like)”与“像/喜欢(like)”这两个单词的意思。

        自然语言处理,像计算机视觉技术一样,将各种有助于实现目标的多种技术进行了融合。建立语言模型来预测语言表达的概率分布,举例来说,就是某一 串给定字符或单词表达某一特定语义的最大可能性。选定的特征可以和文中的某些元素结合来识别一段文字,通过识别这些元素可以把某类文字同其他文字区别开 来,比如垃圾邮件同正常邮件。以机器学习为驱动的分类方法将成为筛选的标准,用来决定一封邮件是否属于垃圾邮件。

        因为语境对于理解“time flies(时光飞逝)”和“fruit flies(果蝇)”的区别是如此重要,所以自然语言处理技术的实际应用领域相对较窄,这些领域包括分析顾客对某项特定产品和服务的反馈、自动发现民事诉 讼或政府调查中的某些含义、以及自动书写诸如企业营收和体育运动的公式化范文等。

        4)机器人技术

        将机器视觉、自动规划等认知技术整合至极小却高性能的传感器、致动器、以及设计巧妙的硬件中,这就催生了新一代的机器人,它有能力与人类一起工 作,能在各种未知环境中灵活处理不同的任务。例如无人机,还有可以在车间为人类分担工作的“cobots”,还包括那些从玩具到家务助手的消费类产品。

        5)语音识别技术

        主要是关注自动且准确的转录人类的语音。该技术必须面对一些与自然语言处理类似的问题,在不同口音的处理 、背景噪音、区分同音异形异义词(“buy”和“by”听起来是一样的)方面存在一些困难,同时还需要具有跟上正常语速的工作速度。语音识别系统使用一些 与自然语言处理系统相同的技术,再辅以其他技术,比如描述声音和其出现在特定序列和语言中概率的声学模型等。语音识别的主要应用包括医疗听写、语音书写、 电脑系统声控、电话客服等。比如 Domino’s Pizza 最近推出了一个允许用户通过语音下单的移动 APP。

        上面提到的认知技术进步飞快并吸引了大量投资,其他相对成熟的认知技术仍然是企业软件系统的重要组成部分。这些日渐成熟的认知技术包括决策最优 化——自动完成对复杂决策或者在资源有限的前提下做出最佳权衡;规划和调度——使设计一系列行动流程来满足目标和观察约束;规则导向系统——为专家系统提 供基础的技术,使用知识和规则的数据库来自动完成从信息中进行推论的处理过程。

        三、认知技术的广泛使用

        各种经济部门已经把认知技术运用到了多种商业职能中。

        1)银行业

        自动欺诈探测系统使用机器学习可以识别出预示着欺诈性付款行动的行为模式;借助语音识别技术能够自动完成电话客服;声音识别可以核实来电者的身份

        2)医疗健康领域

        美国有一半的医院采用自动语音识别来帮助医生自动完成医嘱抄录,而且使用率还在迅速增长;机器视觉系统自动完成乳房X光检查和其他医学影响的分 析;IBM 的 Watson 借助自然语言处理技术来阅读和理解大量医学文献,通过假设自动生成来完成自动诊断,借助机器学习可以提高准确率。

        3)生命科学领域

        机器学习系统被用来预测生物数据和化合物活动的因果关系,从而帮助制药公司识别出最有前景的药物。

        4)媒体与娱乐行业

        许多公司正在使用数据分析和自然语言生成技术,自动起草基于数据的的公文材料,比如公司营收状况、体育赛事综述等。

        5)石油与天然气

        厂商将机器学习广泛运用在矿藏资源定位、钻井设备故障诊断等众多方面。

        6)公共部门

        出于监控、合规和欺诈检测等特定目的,公共部门也已经开始使用认知技术。比如,乔治亚州正在通过众包的形式来进行财政披露和竞选捐助表格的数字化,在这个过程中他们就采用了一套自动手写识别系统。

        7)零售商

        零售商利用机器学习来自动发现有吸引力的交叉销售定价和有效的促销活动。

        8)科技公司

        它们正利用机器视觉、机器学习等认知技术来改进产品或者开发全新产品,比如 Roomba 机器人吸尘器,Nest 智能恒温器。

        上述例子表明,认识技术的潜在商业收益远大于自动化带来的成本节约,这主要体现在:

  • 更快的行动与决策(比如,自动欺诈检测,计划和调度)
  • 更好的结果(比如,医学诊断、石油探测、需求预测)
  • 更高的效率(亦即,更好的利用高技能人才和昂贵设备),
  • 更低的成本(比如,自动电话客服减少了劳动成本)
  • 更大的规模(亦即,开展人力无法执行的大规模任务)
  • 产品与服务创新(从增加新功能到创造新产品)

        四、认知技术影响力与日俱增的原因

        在未来五年,认知技术在商业领域的影响力将显著增长。原因有二,首先,近些年来,技术性能有了实质进步,并处于持续研发状态。其次,数亿美元已 经投入到技术商业化中,许多公司正致力于为各商业部门的广泛需求提供定制化开发和打包方案,以使这些技术更易购买和配置。虽然并非所有的技术提供商都能幸 存,但他们的努力将共同推动市场前进。技术性能的改善和商业化正在共同扩大着认知技术的应用范围,这种情况在未来几年都将持续下去。

        1、技术提升扩展了应用范围

        认知技术大踏步前进的例子非常多。比如 Google 的语音识别系统,一份报告显示,Google 用了不到两年时间就将语音识别的精准度从 2012 年的 84% 提升到如今的 98%。计算机视觉技术也取得了突飞猛进的发展。如果以计算机视觉技术研究者设置的技术标准来看,自 2010 年到 2014 年,图像分类识别的精准度提高了 4 倍。非死book 的 DeepFace 技术在同行评审报告(译者注:同行评审,是一种学术成果审查程序,即一位作者的学术著作或计划被同一领域的其他专家学者评审。)被高度肯定,其脸部识别率 的准确度达到 97%。2011 年,IBM 为了让 Watson 在智力节目《危险边缘》中获胜,曾对 Watson 进行优化,提升两倍的答案精确度。现在,IBM 又宣称如今的 Watson 比当时“智能”了 2400%。

        随着技术的改进和提高,技术应用的范围也在不断扩大。比如,在语音识别方面,机器曾经需要大量训练才能在有限词库里勉强识别出来,由语音识别技 术延伸出的医疗应用程序也很难得到真正普及。而现在,每个月互联网上都会有数以百万次的语音搜索。另外,计算机视觉技术过去被狭隘的理解为部署在工业自动 化方面,但现在,我们早已看到这一技术被广泛运用到监控、安全以及各种各样的消费应用里。IBM 如今正拓展 Watson 在竞赛游戏之外的应用,从医疗诊断到医学研究再到财务建议以及自动化的呼叫中心。

        并不是所有的认知技术都有如此令人瞩目的发展。机器翻译有了一定发展,但幅度很小。一份调查发现,从 2009 年到 2012 年,将阿拉伯语翻译到英语的精确度仅仅提升了 13%。尽管这些技术还不完美,但他们已经可以影响到专业机构的工作方式。很多专业翻译人员依靠机器翻译提升翻译精准度,并把一些常规翻译交给机器,自己 专注在更具挑战性的任务上。

        很多公司正努力将认知技术做进一步研发,并逐步将其融入到更多产品尤其是企业级产品里,以方便企业用户购买和部署。

        2、对商业化进行的大规模投资

        从 2011 年到 2014 年 5 月,超过 20 亿美元的风险投资流入到基于认知技术研究的产品和服务里。与此同时,超过 100 家的相关公司被兼并或收购,其中一些被互联网巨头如亚马逊、苹果、Google、IBM 或 非死book 收购。所有这些投资都在培育一个多样化的公司图谱,这些公司正在加速认知技术的商业化进程。

        在这里,我们并不会提供关于某公司在认知技术商业化方面的细节,我们希望说明,认知技术产品拥有丰富的多样性。下面就是致力于认知技术商业化的公司名单,这个名单既不是完整无缺也非固定不变,而是一个动态的,用于推动和培育市场的指标。

        数据管理和分析工具主要使用自然语言处理、机器学习等认知技术。这些工具利用自然语言处理来从非结构化的文本中提取出意思,或者借助机器学习帮 助分析人员从大规模数据集中发现深层含义。这个领域的公司包括 Context Relevant(译者注:美国的一家大数据挖掘和分析公司)、Palantir Technologies(译者注:这家公司称要将数据、技术、人类和环境连接起来)、以及 Skytree(译者注:一家借助机器学习进行市场分析并提供决策依据的大数据公司)。

        认知技术的各个部分可以被整合到各种应用和商业决策中,分别起到增加功能和提高效率的作用。例如,Wise.io 公司提供一套模块来促进商业决策,比如客户支持、营销和销售,这里面会用到机器学习模型来预测哪些客户比较容易流失,以及哪些潜在客户更加容易转化。 Nuance 公司通过提供一种语音识别技术来帮助开发者进行需要语音控制的移动 APP 的开发。

        单点解决方案。众多认知技术成熟的标志是它们正在被不断的嵌入到特定商业问题的解决方案中。这些解决方案的设计初衷是要比公司原有的解决方案更加有效,并且几乎不需要认知技术方面的专业人员。普及度比较高的应用领域包括广告、营销和销售自动化、预测以及规划。

        技术平台。平台的目的是为建立高度定制化的商业解决方案提供基础。它们会提供一系列功能,包括数据管理、机器学习工具、自然语言处理、知识表示和推理、以及将这些定制化软件整合在一起的统一框架。

        3、新兴应用

        如果这些技术的表现和商业化趋势继续发展,我们就能够大胆预测认知技术的应用将更加广泛,被接受程度也会大大增加。数亿美金的投资涌入这些基于 机器学习、自然语言处理、机器视觉或者机器人技术的公司,这预示着许多新应用即将投入市场。在商业机构依托认知技术构建自动化业务流程、增强产品和服务方 面,我们也看到了巨大空间。

        五、认知技术在企业的应用路径

        认知技术将在接下来几年里变得流行。在未来2-5 年,技术层面的进步和商业化将扩大认知技术对企业的影响。越来越多的企业会找到一些创新性应用来显著改善他们自身的表现或者创造新功能,以增强他们的竞争 地位。企业的 IT 部门现在可以行动起来,增加对这些技术的了解,评估出适用这些技术的机会,将这些技术可能带来的价值向领导进行汇报。高级商务和公共部门的领导应该思考认 知技术将对他们的部门以及整个公司产生何种影响,这些技术将如何激发创新并提升经营表现。

来自: 虎嗅网