微博关系服务与Redis的故事

jopen 11年前

        新浪微博的工程师们曾经在多个公开场合都讲到过,微博平台当前在使用并维护着可能是世界上最大的 Redis 集群,其中最大的一个业务,单个业务使用了超过 10T 的内存,这里说的就是微博关系服务。

        风起

        2009 年微博刚刚上线的时候,微博关系服务使用的是最传统的 Memcache+Mysql 的方案。Mysql 按 uid hash 进行了分库分表,表结构非常简单:

tid fromuid touid addTime
自增 id 关系主体 关系客体

加关注时间

        业务方存在两种查询:

  • 查询用户的关注列表:select touid from table where fromuid=?order by addTime desc
  • 查询用户的粉丝列表:select fromuid from table where touid=?order by addTime desc

        两种查询的业务需求与分库分表的架构设计存在矛盾,最终导致了冗余存储:以 fromuid 为 hash key 存一份,以 touid 为 hash key 再存一份。memcache key 为 fromuid.suffix ,使用不同的 suffix 来区分是关注列表还是粉丝列表,cache value 则为 PHP Serialize 后的 Array。后来为了优化性能,将 value 换成了自己拼装的 byte 数组。

        云涌

        2011 年微博进行平台化改造过程中,业务提出了新的需求:在核心接口中增加了“判断两个用户的关系”的步骤,并增加了“双向关注”的概念。因此两个用户的关系存 在四种状态:关注,粉丝,双向关注和无任何关系。为了高效的实现这个需求,平台引入了 Redis 来存储关系。平台使用 Redis 的 hash 来存储关系:key 依然是 uid.suffix,关注列表,粉丝列表及双向关注列表各自有一个不同的 suffix,value 是一个 hash,field 是 touid,value 是 addTime。order by addTime 的功能则由 Service 内部 sort 实现。部分大V的粉丝列表可能很长,与产品人员的沟通协商后,将存储限定为“最新的 5000 个粉丝列表”。

微博关系服务与Redis的故事

微博关系存储 Redis 结构

        需求实现:

  • 查询用户关注列表:hgetAll uid.following ,then sort
  • 查询用户粉丝列表:hgetAll uid.follower,then sort
  • 查询用户双向关注列表:hgetAll uid.bifollow,then sort
  • 判断两个用户关系:hget uidA.following uidB && hget uidB.following uidA

        后来又增加了几个更复杂的需求:“我与他的共同关注列表”、“我关注的人里谁关注了他”等等,就不展开来讲了。

        平台在刚引入 Redis 的一段时间里踩了不少坑,举几个例子:

  • 运维工具和流程从零开始做,运维成熟的速度赶不上业务增长的速度:在还没来得及安排性能调优的工作,fd 已经达到默认配置的上限了,最后我们只能趁凌晨业务低峰期重启 Redis 集群,以便设置新的 ulimit 参数
  • 平台最开始使用的 Redis 版本是 2.0,因为 Redis 代码足够简单,从引入到微博起,我们就开始对其进行了定制化开发,从主从复制,到写磁盘限速,再到内存管理,都进行了定制。导致的结果是,有一段时间,微 博的线上存在超过 5 种不同的 Redis 修改版,对于运维,bugfix,升级都带来了巨大的麻烦。后来由田风军 @果爸果爸为内部 Redis 版本提供了不停机升级功能后,才慢慢好转。
  • 平台有一个业务曾经使用了非默认 db ,后来费了好大力气去做迁移
  • 平台还有一个业务需要定期对数据进行 flush db ,以腾出空间存储最新数据。为了避免在 flush db 阶段影响线上业务,我们从 client 到 server 都做了大量的修改。
  • 平台每年长假前都会做一些线上业务排查,和故障模拟(2013 年甚至做了一个名叫 Touchstone 的容灾压测系统)。2011 年十一假前,我们用 iptables 将 Redis 端口的所有包都 drop 掉,结果 client 端等了 120 秒才返回。于是我们在放假前熬夜加班给 client 添加超时检测功能,但真正上线还是等到了假期回来后。

        破茧

        对于微博关系服务,最大的挑战还是容量和访问量的快速增长,这给我们的 Redis 方案带来了不少的麻烦:

        第一个碰到的麻烦是 Redis 的 hgetAll 在 hash size 较大的场景下慢请求比例较高。我们调整了 hash-max-zip-size,节约了1/3 的内存,但对业务整体性能的提升有限。最后,我们不得不在 Redis 前面又挡了一层 memcache,用来抗 hgetAll 读的问题。

        第二个麻烦是新上的需求:“我关注的人里谁关注了他”,由于用户的粉丝列表可能不全,在这种情况下就不能用关注列表与粉丝列表求交集的方式来计 算结果,只能降级到需求的字面描述步骤:取我的关注人列表,然后逐个判断这些人里谁关注了他。client 端分批并行发起请求,还好 Redis 的单个关系判断非常快。

        第三个麻烦,也是最大的麻烦,就是容量增长的问题了。最初的设计方案,按 uid hash 成 16 个端口,每台 64G 内存的机器上部署 2 个端口,每个业务 IDC 机房部署一套。后来,每台机器上就只部署一个端口了。再后来,128G 内存的机器还没有进入公司采购目录,64G 内存就即将 OOM 了,所以我们不得不做了一次端口扩容:16 端口拆 64 端口,依然是每台 64G 内存机器上部署 2 个端口。再后来,又只部署一个端口。再后来,升级到 128G 内存机器。再后来,128G 机器上出现 OOM 了!现在怎么办?

        化蝶

        为了从根本上解决容量的问题,我们开始寻找一种本质的解决方案。最初选择引入 Redis 作为一个 storage,是因为用户关系判断功能请求的数据热点不是很集中,长尾效果明显,cache miss 可能会影响核心接口性能,而保证一个可接受的 cache 命中率,耗费的内存与 storage 差别不大。但微博经过了 3 年的演化,最初作为选择依据的那些假设前提,数据指标都已经发生了变化:随着用户基数的增大,冷用户的绝对数量也在增大;Redis 作为存储,为了数据可靠性必须开启 rdb 和 aof,而这会导致业务只能使用一半的机器内存;Redis hash 存储效率太低,特别是与内部极度优化过的 RedisCounter 对比。种种因素加在一起,最终确定下来的方向就是:将 Redis 在这里的 storage 角色降低为 cache 角色。

        前面提到的微博关系服务当前的业务场景,可以归纳为两类:一类是取列表,一类是判断元素在集合中是否存在,而且是批量的。即使是 Redis 作为 storage 的时代,取列表都要依赖前面的 memcache 帮忙抗,那么作为 cache 方案,取列表就全部由 memcache 代劳了。批量判断元素在集合中是否存在,redis hash 依然是最佳的数据结构,但存在两个问题:cache miss 的时候,从 db 中获取数据后,set cache 性能太差:对于那些关注了 3000 人的微博会员们,set cache 偶尔耗时可达到 10ms 左右,这对于单线程的 Redis 来说是致命的,意味着这 10ms 内,这个端口无法提供任何其它的服务。另一个问题是 Redis hash 的内存使用效率太低,对于目标的 cache 命中率来说,需要的 cache 容量还是太大。于是,我们又祭出 “Redis 定制化”的法宝:将 redis hash 替换成一个“固定长度开放 hash 寻址数组”,在 Redis 看来就是一个 byte 数组,set cache 只需要一次 redis set。通过精心选择的 hash 算法及数组填充率,能做到批量判断元素是否存在的性能与原生的 redis hash 相当。

        通过微博关系服务 Redis storage 的 cache 化改造,我们将这里的 Redis 内存占用降低了一个数量级。它可能会失去“最大的单个业务 Redis 集群”的头衔,但我们比以前更有成就感,更快乐了。

        作者简介

        唐福林(@唐福林),微博技术委员会成员,微博平台资深架构 师,致力于高性能高可用互联网服务开发,及高效率团队建设。从 2010 年开始深度参与微博平台的建设,目前工作重心为微博服务在无线环境下的端到端全链路优化。业余时间他是一个一岁女孩的爸爸,最擅长以 45°凉开水冲泡奶粉。

来自: InfoQ