使用 C++ 的 StringBuilder 提升 4350% 的性能

aiyongay 8年前
   <h2>介绍</h2>    <p>经常出现客户端打电话抱怨说:你们的程序慢如蜗牛。你开始检查可能的疑点:文件IO,数据库访问速度,甚至查看web服务。 但是这些可能的疑点都很正常,一点问题都没有。</p>    <p>你使用最顺手的性能分析工具分析,发现瓶颈在于一个小函数,这个函数的作用是将一个长的字符串链表写到一文件中。</p>    <p>你对这个函数做了如下优化:将所有的小字符串连接成一个长的字符串,执行一次文件写入操作,避免成千上万次的小字符串写文件操作。</p>    <p>这个优化只做对了一半。</p>    <p>你先测试大字符串写文件的速度,发现快如闪电。然后你再测试所有字符串拼接的速度。</p>    <p>好几年。</p>    <p>怎么回事?你会怎么克服这个问题呢?</p>    <p>你或许知道.net程序员可以使用 <a href="/misc/goto?guid=4959547227714202785" rel="nofollow,noindex">StringBuilder</a> 来解决此问题。这也是本文的起点。</p>    <h2>背景</h2>    <p>如果google一下“C++ StringBuilder”,你会得到不少答案。有些会建议(你)使用std::accumulate,这可以完成几乎所有你要实现的:</p>    <pre>  <code class="language-cpp">#include <iostream>// for std::cout, std::endl  #include <string>  // for std::string  #include <vector>  // for std::vector  #include <numeric> // for std::accumulate  int main()  {   using namespace std;   vector<string> vec = { "hello", " ", "world" };   string s = accumulate(vec.begin(), vec.end(), s);   cout << s << endl; // prints 'hello world' to standard output.    return 0;  }</code></pre>    <p>目前为止一切都好:当你有超过几个字符串连接时,问题就出现了,并且内存再分配也开始积累。</p>    <p>std::string在函数reserver()中为解决方案提供基础。这也正是我们的意图所在:一次分配,随意连接。</p>    <p>字符串连接可能会因为繁重、迟钝的工具而严重影响性能。由于上次存在的隐患,这个特殊的怪胎给我制造麻烦,我便放弃了Indigo(我想尝试一些C++11里的令人耳目一新的特性),并写了一个StringBuilder类的部分实现:</p>    <pre>  <code class="language-cpp">// Subset of http://msdn.microsoft.com/en-us/library/system.text.stringbuilder.aspx  template <typename chr>  class StringBuilder {   typedef std::basic_string<chr> string_t;    typedef std::list<string_t> container_t; // Reasons not to use vector below.    typedef typename string_t::size_type size_type; // Reuse the size type in the string.   container_t m_Data;   size_type m_totalSize;   void append(const string_t &src) {    m_Data.push_back(src);    m_totalSize += src.size();   }   // No copy constructor, no assignement.   StringBuilder(const StringBuilder &);   StringBuilder & operator = (const StringBuilder &);  public:   StringBuilder(const string_t &src) {    if (!src.empty()) {     m_Data.push_back(src);    }    m_totalSize = src.size();   }   StringBuilder() {    m_totalSize = 0;   }   // TODO: Constructor that takes an array of strings.         StringBuilder & Append(const string_t &src) {    append(src);    return *this; // allow chaining.   }          // This one lets you add any STL container to the string builder.    template<class inputIterator>   StringBuilder & Add(const inputIterator &first, const inputIterator &afterLast) {    // std::for_each and a lambda look like overkill here.                  // <b>Not</b> using std::copy, since we want to update m_totalSize too.    for (inputIterator f = first; f != afterLast; ++f) {     append(*f);    }    return *this; // allow chaining.   }   StringBuilder & AppendLine(const string_t &src) {    static chr lineFeed[] { 10, 0 }; // C++ 11. Feel the love!    m_Data.push_back(src + lineFeed);    m_totalSize += 1 + src.size();    return *this; // allow chaining.   }   StringBuilder & AppendLine() {    static chr lineFeed[] { 10, 0 };     m_Data.push_back(lineFeed);    ++m_totalSize;    return *this; // allow chaining.   }      // TODO: AppendFormat implementation. Not relevant for the article.          // Like C# StringBuilder.ToString()      // Note the use of reserve() to avoid reallocations.    string_t ToString() const {    string_t result;    // The whole point of the exercise!    // If the container has a lot of strings, reallocation (each time the result grows) will take a serious toll,    // both in performance and chances of failure.    // I measured (in code I cannot publish) fractions of a second using 'reserve', and almost two minutes using +=.    result.reserve(m_totalSize + 1);   // result = std::accumulate(m_Data.begin(), m_Data.end(), result); // This would lose the advantage of 'reserve'    for (auto iter = m_Data.begin(); iter != m_Data.end(); ++iter) {      result += *iter;    }    return result;   }      // like javascript Array.join()   string_t Join(const string_t &delim) const {    if (delim.empty()) {     return ToString();    }    string_t result;    if (m_Data.empty()) {     return result;    }    // Hope we don't overflow the size type.    size_type st = (delim.size() * (m_Data.size() - 1)) + m_totalSize + 1;    result.reserve(st);                  // If you need reasons to love C++11, here is one.    struct adder {     string_t m_Joiner;     adder(const string_t &s): m_Joiner(s) {      // This constructor is NOT empty.     }                          // This functor runs under accumulate() without reallocations, if 'l' has reserved enough memory.      string_t operator()(string_t &l, const string_t &r) {      l += m_Joiner;      l += r;      return l;     }    } adr(delim);    auto iter = m_Data.begin();                   // Skip the delimiter before the first element in the container.    result += *iter;     return std::accumulate(++iter, m_Data.end(), result, adr);   }     }; // class StringBuilder</code></pre>    <h2>有趣的部分</h2>    <p>函数ToString()使用std::string::reserve()来实现最小化再分配。下面你可以看到一个性能测试的结果。</p>    <p>函数join()使用std::accumulate(),和一个已经为首个操作数预留内存的自定义函数。</p>    <p>你可能会问,为什么StringBuilder::m_Data用std::list而不是std::vector?除非你有一个用其他容器的好理由,通常都是使用std::vector。</p>    <p>好吧,我(这样做)有两个原因:</p>    <p>1. 字符串总是会附加到一个容器的末尾。std::list允许在不需要内存再分配的情况下这样做;因为vector是使用一个连续的内存块实现的,每用一个就可能导致内存再分配。</p>    <p>2. std::list对顺序存取相当有利,而且在m_Data上所做的唯一存取操作也是顺序的。</p>    <p>你可以建议同时测试这两种实现的性能和内存占用情况,然后选择其中一个。</p>    <h2>性能评估</h2>    <p>为了测试性能,我从Wikipedia获取一个网页,并将其中一部分内容写死到一个string的vector中。</p>    <p>随后,我编写两个测试函数,第一个在两个循环中使用标准函数clock()并调用std::accumulate()和StringBuilder::ToString(),然后打印结果。</p>    <pre>  <code class="language-cpp">void TestPerformance(const StringBuilder<wchar_t> &tested, const std::vector<std::wstring> &tested2) {   const int loops = 500;   clock_t start = clock(); // Give up some accuracy in exchange for platform independence.   for (int i = 0; i < loops; ++i) {    std::wstring accumulator;    std::accumulate(tested2.begin(), tested2.end(), accumulator);   }   double secsAccumulate = (double) (clock() - start) / CLOCKS_PER_SEC;      start = clock();   for (int i = 0; i < loops; ++i) {    std::wstring result2 = tested.ToString();   }   double secsBuilder = (double) (clock() - start) / CLOCKS_PER_SEC;   using std::cout;   using std::endl;   cout << "Accumulate took " << secsAccumulate << " seconds, and ToString() took " << secsBuilder << " seconds."     << " The relative speed improvement was " << ((secsAccumulate / secsBuilder) - 1) * 100 << "%"     << endl;  }</code></pre>    <p>第二个则使用更精确的Posix函数clock_gettime(),并测试StringBuilder::Join()。</p>    <pre>  <code class="language-cpp">#ifdef __USE_POSIX199309     // Thanks to <a href="http://www.guyrutenberg.com/2007/09/22/profiling-code-using-clock_gettime/">Guy Rutenberg</a>.  timespec diff(timespec start, timespec end)  {   timespec temp;   if ((end.tv_nsec-start.tv_nsec)<0) {    temp.tv_sec = end.tv_sec-start.tv_sec-1;    temp.tv_nsec = 1000000000+end.tv_nsec-start.tv_nsec;   } else {    temp.tv_sec = end.tv_sec-start.tv_sec;    temp.tv_nsec = end.tv_nsec-start.tv_nsec;   }   return temp;  }     void AccurateTestPerformance(const StringBuilder<wchar_t> &tested, const std::vector<std::wstring> &tested2) {   const int loops = 500;   timespec time1, time2;   // Don't forget to add -lrt to the g++ linker command line.   ////////////////   // Test std::accumulate()   ////////////////   clock_gettime(CLOCK_THREAD_CPUTIME_ID, &time1);   for (int i = 0; i < loops; ++i) {    std::wstring accumulator;    std::accumulate(tested2.begin(), tested2.end(), accumulator);   }   clock_gettime(CLOCK_THREAD_CPUTIME_ID, &time2);   using std::cout;   using std::endl;   timespec tsAccumulate =diff(time1,time2);   cout << tsAccumulate.tv_sec << ":" <<  tsAccumulate.tv_nsec << endl;   ////////////////   // Test ToString()   ////////////////   clock_gettime(CLOCK_THREAD_CPUTIME_ID, &time1);   for (int i = 0; i < loops; ++i) {    std::wstring result2 = tested.ToString();   }   clock_gettime(CLOCK_THREAD_CPUTIME_ID, &time2);   timespec tsToString =diff(time1,time2);   cout << tsToString.tv_sec << ":" << tsToString.tv_nsec << endl;   ////////////////   // Test join()   ////////////////   clock_gettime(CLOCK_THREAD_CPUTIME_ID, &time1);   for (int i = 0; i < loops; ++i) {    std::wstring result3 = tested.Join(L",");   }   clock_gettime(CLOCK_THREAD_CPUTIME_ID, &time2);   timespec tsJoin =diff(time1,time2);   cout << tsJoin.tv_sec << ":" << tsJoin.tv_nsec << endl;      ////////////////   // Show results   ////////////////   double secsAccumulate = tsAccumulate.tv_sec + tsAccumulate.tv_nsec / 1000000000.0;   double secsBuilder = tsToString.tv_sec + tsToString.tv_nsec / 1000000000.0;          double secsJoin = tsJoin.tv_sec + tsJoin.tv_nsec / 1000000000.0;   cout << "Accurate performance test:" << endl << "    Accumulate took " << secsAccumulate << " seconds, and ToString() took " << secsBuilder << " seconds." << endl     << "    The relative speed improvement was " << ((secsAccumulate / secsBuilder) - 1) * 100 << "%" << endl <<               "     Join took " << secsJoin << " seconds."     << endl;  }  #endif // def __USE_POSIX199309</code></pre>    <p>最后,通过一个main函数调用以上实现的两个函数,将结果显示在控制台,然后执行性能测试:一个用于调试配置。</p>    <p><img src="https://simg.open-open.com/show/b2e4568270817a13661989ad9827ca76.png"></p>    <p>t另一个用于发行版本:</p>    <p><img src="https://simg.open-open.com/show/abc5c1611f7acef34599e0912f7227a9.png"></p>    <p>看到这百分比没?垃圾邮件的发送量都不能达到这个级别!</p>    <h2>代码使用</h2>    <p>在使用这段代码前, 考虑使用ostring流。正如你在下面看到Jeff先生评论的一样,它比这篇文章中的代码更快些。</p>    <p>你可能想使用这段代码,如果:</p>    <ul>     <li>你正在编写由具有C#经验的程序员维护的代码,并且你想提供一个他们所熟悉接口的代码。</li>     <li>你正在编写将来会转换成.net的、你想指出一个可能路径的代码。</li>     <li>由于某些原因,你不想包含<sstream>。几年之后,一些流的IO实现变得很繁琐,而且现在的代码仍然不能完全摆脱他们的干扰。</li>    </ul>    <p>要使用这段代码,只有按照main函数实现的那样就可以了:创建一个StringBuilder的实例,用Append()、AppendLine()和Add()给它赋值,然后调用ToString函数检索结果。</p>    <p>就像下面这样:</p>    <pre>  <code class="language-cpp">int main() {   ////////////////////////////////////   // 8-bit characters (ANSI)   ////////////////////////////////////   StringBuilder<char> ansi;   ansi.Append("Hello").Append(" ").AppendLine("World");   std::cout << ansi.ToString();      ////////////////////////////////////   // Wide characters (Unicode)   ////////////////////////////////////   // http://en.wikipedia.org/wiki/Cargo_cult   std::vector<std::wstring> cargoCult   {    L"A", L" cargo", L" cult", L" is", L" a", L" kind", L" of", L" Melanesian", L" millenarian", L" movement",  // many more lines here...  L" applied", L" retroactively", L" to", L" movements", L" in", L" a", L" much", L" earlier", L" era.\n"   };   StringBuilder<wchar_t> wide;   wide.Add(cargoCult.begin(), cargoCult.end()).AppendLine();          // use ToString(), just like .net   std::wcout << wide.ToString() << std::endl;   // javascript-like join.   std::wcout << wide.Join(L" _\n") << std::endl;      ////////////////////////////////////   // Performance tests   ////////////////////////////////////   TestPerformance(wide, cargoCult);  #ifdef __USE_POSIX199309   AccurateTestPerformance(wide, cargoCult);  #endif // def __USE_POSIX199309   return 0;  }</code></pre>    <p>任何情况下,当连接超过几个字符串时,当心std::accumulate函数。</p>    <h2>现在稍等一下!</h2>    <p>你可能会问:你是在试着说服我们提前优化吗?</p>    <p>不是的。我赞同提前优化是糟糕的。这种优化并不是提前的:是及时的。这是基于经验的优化:我发现自己过去一直在和这种特殊的怪胎搏斗。基于经验的优化(不在同一个地方摔倒两次)并不是提前优化。</p>    <p>当我们优化性能时,“惯犯”会包括磁盘I-O操作、网络访问(数据库、web服务)和内层循环;对于这些,我们应该添加内存分配和性能糟糕的 Keyser Söze。</p>    <h3>鸣谢</h3>    <p>首先,我要为这段代码在Linux系统上做的精准分析感谢Rutenberg。</p>    <p>多亏了Wikipedia,让“在指尖的信息”的梦想得以实现。</p>    <p>最后,感谢你花时间阅读这篇文章。希望你喜欢它:不论如何,请分享您的意见。</p>    <p> </p>    <p>来自:http://blog.jobbole.com/109663/</p>    <p> </p>