FutureTask源码分析
OrvilleBurl
8年前
<p>对于java的并发编程来说,我们都知道Thread和runnable,这是创建一个线程最基本的两种方法,但是这两种方法创建的线程是不支持对线程的执行结果进行返回的。虽然我们可以通过传递引用的方式实现,但是实现起来未免太复杂。这个时候我们可能要用到Callable,callable是一个JDK提供的一个支持线程返回结果的一个接口,通过实现call方法,能返回指定泛型的变量。</p> <pre> <code class="language-java">class CallableTask implements Callable<Integer>{ @Override public Integer call() throws Exception { System.out.println("call runing"); Thread.sleep(5000); return 1; } } public class CallableTest { public static void main(String args[]){ CallableTask task = new CallableTask(); try { System.out.println("call start"); ExecutorService service = Executors.newSingleThreadExecutor(); Future fu = service.submit(task); System.out.println(fu.get()); service.shutdown(); System.out.println("call end"); } catch (Exception e) { e.printStackTrace(); } } }</code></pre> <p>可以通过线程池去实现任务的提交,任务提交后会返回future对象,通过get方法即可获得返回值。</p> <p>注意:这里其实是不推荐调用call方法的,实际上直接调用call方法和runnable的run方法效果是一样的。</p> <p>其实JDK提供了一种更好的提交方式,它可以将Runnable和Callable进行封装,以便于提交到线程池。并且可以对线程有更好的控制,比如取消线程的执行,它就是FutureTask。</p> <p>FutureTask只是简单的对Callable以及Runnable进行了封装,提供了额外的对线程控制的功能以及阻塞获取请求结果的功能,其实对于线程池的submit方法,对于每一个任务都会封装成一个FutureTask来运行。</p> <pre> <code class="language-java">/** * @throws RejectedExecutionException {@inheritDoc} * @throws NullPointerException {@inheritDoc} */ public <T> Future<T> submit(Callable<T> task) { if (task == null) throw new NullPointerException(); RunnableFuture<T> ftask = newTaskFor(task); execute(ftask); return ftask; } /** * Returns a <tt>RunnableFuture</tt> for the given callable task. * * @param callable the callable task being wrapped * @return a <tt>RunnableFuture</tt> which when run will call the * underlying callable and which, as a <tt>Future</tt>, will yield * the callable's result as its result and provide for * cancellation of the underlying task. * @since 1.6 */ protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) { return new FutureTask<T>(callable); }</code></pre> <p>那么FutureTask到底是怎么实现的呢?</p> <p>首先看构造方法:</p> <pre> <code class="language-java">/** * Creates a <tt>FutureTask</tt> that will, upon running, execute the * given <tt>Callable</tt>. * * @param callable the callable task * @throws NullPointerException if callable is null */ public FutureTask(Callable<V> callable) { if (callable == null) throw new NullPointerException(); sync = new Sync(callable); } /** * Creates a <tt>FutureTask</tt> that will, upon running, execute the * given <tt>Runnable</tt>, and arrange that <tt>get</tt> will return the * given result on successful completion. * * @param runnable the runnable task * @param result the result to return on successful completion. If * you don't need a particular result, consider using * constructions of the form: * {@code Future<?> f = new FutureTask<Void>(runnable, null)} * @throws NullPointerException if runnable is null */ public FutureTask(Runnable runnable, V result) { sync = new Sync(Executors.callable(runnable, result)); }</code></pre> <p>FutureTask可以接受Runnable以及Callable两种类型的参数,在初始化的时候内部构造了一个Sync的AQS实现类的实例,对于runnable类型的线程需要转化成Callable,同时可以指定返回值。</p> <p>当我们再观察其他方法的时候,几乎都是委托Sync去处理的,那么重点就放在了Sync上。</p> <p>首先看看Sync里面有几个状态:</p> <pre> <code class="language-java">/** State value representing that task is ready to run */ private static final int READY = 0;//准备就绪 /** State value representing that task is running */ private static final int RUNNING = 1;//正在运行 /** State value representing that task ran */ private static final int RAN = 2;//运行完毕 /** State value representing that task was cancelled */ private static final int CANCELLED = 4;//任务取消</code></pre> <p>一个FutureTask的实例就在上面几个状态之间进行轮转,当执行线程时调用run方法,run方法又委托Syn的innerRun方法:</p> <pre> <code class="language-java">/** * Sets this Future to the result of its computation * unless it has been cancelled. */ public void run() { sync.innerRun(); } //首先CAS将status置为RUNING,可以防止结束前重复提交 void innerRun() { if (!compareAndSetState(READY, RUNNING)) return; runner = Thread.currentThread(); //double check 防止在此之前被cancel if (getState() == RUNNING) { // recheck after setting thread V result; try { result = callable.call(); } catch (Throwable ex) { setException(ex); return; } //设置结果 set(result); } else { //清除runner,唤醒阻塞线程 releaseShared(0); // cancel } }</code></pre> <p>当执行线程的时候,首先做的是将AQS的状态由READY变成RUNNING,因为Sync是AQS的实现类,这个也是改变AQS的状态,改变状态之后进行double check,此时是为了防止在这之前有Cancel的请求。如果Cancel了,那么releaseShared清除状态并且唤醒get等待的线程。如果为Running状态,接下来调用call方法,这里也就是为什么要提交到线程池执行了,注意call方法调用只是一个方法调用,而不像Thread.start那样会直接返回,并且开启新线程执行。当执行完毕之后,调用Set,Set其实也是委托给Sync的innerSet:</p> <pre> <code class="language-java">/** * Sets the result of this Future to the given value unless * this future has already been set or has been cancelled. * This method is invoked internally by the <tt>run</tt> method * upon successful completion of the computation. * @param v the value */ protected void set(V v) { sync.innerSet(v); } void innerSet(V v) { for (;;) { int s = getState(); if (s == RAN) return; //收到取消信号,不设置结果,直接返回 if (s == CANCELLED) { // aggressively release to set runner to null, // in case we are racing with a cancel request // that will try to interrupt runner releaseShared(0); return; } //设置结果,并设置当前的状态为RAN if (compareAndSetState(s, RAN)) { //设置内容 result = v; //唤醒阻塞线程 releaseShared(0); done(); return; } } }</code></pre> <p>这里在Set的时候呢,首先也是判断状态如果是RAN直接返回,如果取消了,那么唤醒get等待的线程,并且返回。如果都没有,那么设置FutureTask状态为RAN,表示线程执行完了,同时设置restult为返回值,唤醒所有的等待线程。</p> <p>上面其实在执行前和执行后都做了Cancel的检查,如果取消,无论执行前后都是没有结果set给result的。</p> <p>接下来看看是怎么实现阻塞等待结果的,首先看get方法:</p> <pre> <code class="language-java">/** * @throws CancellationException {@inheritDoc} */ public V get() throws InterruptedException, ExecutionException { return sync.innerGet(); } V innerGet() throws InterruptedException, ExecutionException { //共享锁,没有完成会阻塞在这 acquireSharedInterruptibly(0); //如果已经取消,那么抛出异常 if (getState() == CANCELLED) throw new CancellationException(); if (exception != null) throw new ExecutionException(exception); return result; }</code></pre> <p>同样是委托机制,其实关键在于acquireSharedInterruptibly方法。</p> <pre> <code class="language-java">/** * Acquires in shared mode, aborting if interrupted. Implemented * by first checking interrupt status, then invoking at least once * {@link #tryAcquireShared}, returning on success. Otherwise the * thread is queued, possibly repeatedly blocking and unblocking, * invoking {@link #tryAcquireShared} until success or the thread * is interrupted. * @param arg the acquire argument * This value is conveyed to {@link #tryAcquireShared} but is * otherwise uninterpreted and can represent anything * you like. * @throws InterruptedException if the current thread is interrupted */ public final void acquireSharedInterruptibly(int arg) throws InterruptedException { if (Thread.interrupted()) throw new InterruptedException(); if (tryAcquireShared(arg) < 0) //如果目前是RAN状态或者是Cancel状态的话标识已经完成或者结束 doAcquireSharedInterruptibly(arg);//等待Task运行结束,唤醒阻塞队列 } /** * Implements AQS base acquire to succeed if ran or cancelled */ protected int tryAcquireShared(int ignore) { return innerIsDone() ? 1 : -1; } boolean innerIsDone() { return ranOrCancelled(getState()) && runner == null; } private boolean ranOrCancelled(int state) { return (state & (RAN | CANCELLED)) != 0; }</code></pre> <p>其实这里还是使用了委托的机制,同时呢采用了一个共享锁去实现同步,共享锁有一个特点就是允许多个线程获取锁,其实这里对于get操作,其实多个线程同时get是没有问题的,并且如果使用独占锁会降低性能,这里引入共享锁感觉是比较巧妙的。</p> <p>上面代码将的是,首先线程回去check当前FutureTask的状态,如果是RAN或者Cancel,表示线程已经结束,那么直接返回,如果当前不是上面状态,证明此时线程没执行或者没执行完,那么需要阻塞等待,所以执行doAcquireSharedInterruptibly,让线程等待,等待innerSet之后或者Cancel之后的releaseShared。releaseShared会逐步的唤醒所有阻塞在get上的线程,这样所以线程都能get到结果。提高了效率。</p> <p>FutureTask实现不但简单而且巧妙(比如巧妙的运用了共享锁),最重要的是使用的也是十分广泛:</p> <ol> <li> <p>做异步处理,对于下载,或者生成PDF这种比较重的场景,我们可以通过将请求异步化,抽象成FutureTask提交到线程池中运行,从而避免占用大量的Worker线程(Tomcat或者RPC框架),导致后面的请求阻塞。</p> </li> <li> <p>对于服务的同步调用,我们可以利用FutureTask进行服务的并行调用,而在最后进行结果的汇总,这样就能变串行调用为并行调用,大大的减小请求的时间(类似于Fork-Join)。</p> </li> </ol> <p>最后,异步线程处理和并行处理是个好东西,需要用起来!!!。</p> <p> </p> <p>来自:http://www.jianshu.com/p/dfff17300a87</p> <p> </p>