数据结构:图的表示

liuzhaoq18 8年前
   <p>任何一本讲到图算法的算法书,都会讲到图的表示方法有两种</p>    <p>1 邻接矩阵 ,对于N个点的图,需要N×N的矩阵表示点与点之间是否有边的存在。这种表示法的缺点是浪费空间,尤其是对于N×N的矩阵是稀疏矩阵,即边的数目远远小于N×N的时候,浪费了巨大的存储空间</p>    <p style="text-align: center;"><img src="https://simg.open-open.com/show/b5ab6e83d227540a5969a25cecd49d28.png"></p>    <p>2 邻接链表,对于任何一个node A,外挂一个邻接链表,如果存在 A->X这样的边,就将X链入链表。 这种表示方法的优点是节省空间,缺点是所有链表都存在的缺点,地址空间的不连续造成缓存命中降低,性能有不如临界矩阵这样的数组。</p>    <p style="text-align: center;"><img src="https://simg.open-open.com/show/2b0027d35deee1e7cae8e7eb94846ea0.png"></p>    <p>一直以来,我也是觉得,鱼和熊掌不可兼得,这是无可奈何的事情。直到我看到了一份比较完美的code。他有动态分配的数组来存放邻接节点。一起欣赏下这份代码吧。年前我第一次看到这份代码的时候,激动的我晚上半天睡不着觉。平时自己写的代码,一板一眼,虽说功能无误,总少了那么几分灵气。看了C算法,也算对图的表示方法知道一些,却写不出这么优美的代码。</p>    <p>我以前觉得,自己大量练习联系写代码是学习编程的最好的方法,是最开但是看了这份代码后,觉得,学习前辈高人优秀的代码,是提高自己的一条捷径,对我们这些普通的coder而言,我们看代码的时间是超过写代码的时间的。阅读前辈优秀代码,会更快的提升自己的编程能力。对于初学者尤其是这样,这也是进入一个优秀的开发team的重要性,能更快的成长。</p>    <p>欣赏代码Yale大学前辈的代码吧。</p>    <pre>  #ifndef __GRAPH_H__  #define __GRAPH_H__     typedef struct graph *Graph;     Graph graph_create(int n);  void graph_destroy(Graph);  void graph_add_edge(Graph, int source, int sink);  int graph_vertex_count(Graph);  int graph_edge_count(Graph);  int graph_out_degree(Graph, int source);  int graph_has_edge(Graph, int source, int sink);  void graph_foreach(Graph g, int source,          void (*f)(Graph g, int source, int sink, void *data),          void *data);     #endif  </pre>    <pre>  #include <stdlib.h>  #include <assert.h>     #include "graph.h"     /* basic directed graph type */  /* the implementation uses adjacency lists  * represented as variable-length arrays */     /* these arrays may or may not be sorted: if one gets long enough  * and you call graph_has_edge on its source, it will be */     struct graph {      int n;                                             /* number of vertices */      int m;                                             /* number of edges */      struct successors {          int d;                                         /* number of successors */          int len;                                       /* number of slots in array */          char is_sorted;                                /* true if list is already sorted */          int list[1];                                                                                           /* actual list of successors */      } *alist[1];  };     /* create a new graph with n vertices labeled 0..n-1 and no edges */  Graph  graph_create(int n)  {      Graph g;      int i;         g = malloc(sizeof(struct graph) + sizeof(struct successors *) * (n-1));      assert(g);         g->n = n;      g->m = 0;         for(i = 0; i < n; i++) {          g->alist[i] = malloc(sizeof(struct successors));          assert(g->alist[i]);             g->alist[i]->d = 0;          g->alist[i]->len = 1;          g->alist[i]->is_sorted= 1;      }            return g;  }     /* free all space used by graph */  void  graph_destroy(Graph g)  {      int i;         for(i = 0; i < g->n; i++) free(g->alist[i]);      free(g);  }     /* add an edge to an existing graph */  void  graph_add_edge(Graph g, int u, int v)  {      assert(u >= 0);      assert(u < g->n);      assert(v >= 0);      assert(v < g->n);         /* do we need to grow the list? */      while(g->alist[u]->d >= g->alist[u]->len) {          g->alist[u]->len *= 2;          g->alist[u] =              realloc(g->alist[u],                  sizeof(struct successors) + sizeof(int) * (g->alist[u]->len - 1));      }         /* now add the new sink */      g->alist[u]->list[g->alist[u]->d++] = v;      g->alist[u]->is_sorted = 0;         /* bump edge count */      g->m++;  }     /* return the number of vertices in the graph */  int  graph_vertex_count(Graph g)  {      return g->n;  }     /* return the number of vertices in the graph */  int  graph_edge_count(Graph g)  {      return g->m;  }     /* return the out-degree of a vertex */  int  graph_out_degree(Graph g, int source)  {      assert(source >= 0);      assert(source < g->n);         return g->alist[source]->d;  }     /* when we are willing to call bsearch */  #define BSEARCH_THRESHOLD (10)     static int  intcmp(const void *a, const void *b)  {      return *((const int *) a) - *((const int *) b);  }     /* return 1 if edge (source, sink) exists), 0 otherwise */  int  graph_has_edge(Graph g, int source, int sink)  {      int i;         assert(source >= 0);      assert(source < g->n);      assert(sink >= 0);      assert(sink < g->n);         if(graph_out_degree(g, source) >= BSEARCH_THRESHOLD) {          /* make sure it is sorted */          if(! g->alist[source]->is_sorted) {              qsort(g->alist[source]->list,                      g->alist[source]->d,                      sizeof(int),                      intcmp);          }                    /* call bsearch to do binary search for us */          return              bsearch(&sink,                      g->alist[source]->list,                      g->alist[source]->d,                      sizeof(int),                      intcmp)              != 0;      } else {          /* just do a simple linear search */          /* we could call lfind for this, but why bother? */          for(i = 0; i < g->alist[source]->d; i++) {              if(g->alist[source]->list[i] == sink) return 1;          }          /* else */          return 0;      }  }     /* invoke f on all edges (u,v) with source u */  /* supplying data as final parameter to f */  void  graph_foreach(Graph g, int source,      void (*f)(Graph g, int source, int sink, void *data),      void *data)  {      int i;         assert(source >= 0);      assert(source < g->n);         for(i = 0; i < g->alist[source]->d; i++) {          f(g, source, g->alist[source]->list[i], data);      }  }  </pre>    <p>这是一份 PineWiki 网站里面提供的一份图的表示的代码,实现的很优美吧?动态分配数组,长度可以扩展,既不浪费空间,有不会带来性能损失。</p>    <p>除此外,graph_foreach这种思想也很不错啊。最近学习了一段时间的Lisp,这种传递函数作用到每一个元素上的方法,相当于Lisp中的mapcar,让人不仅拍案叫绝,很容易就能扩展出很好的功能。(当然也不是完全没瑕疵,比如realloc没有判断失败的情景,白璧微瑕)</p>    <p>既然是图的表示,我们当然很希望能够看到可视化的图。我看Land of Lisp一书中,学到了Linux下的neato 命令。 Linux下有工具帮助生成图的图片,可以满足我们可视化的需求。</p>    <p>先看下测试代码。</p>    <pre>  #include <stdio.h>  #include <assert.h>     #include "graph.h"     #define TEST_SIZE (6)     static void  match_sink(Graph g, int source, int sink, void *data)  {      assert(data && sink == *((int *) data));  }     static int node2dot(Graph g)  {      assert(g != NULL);      return 0;  }     static void print_edge2dot(Graph g,int source, int sink, void *data)  {      fprintf(stdout,"%d->%d;n",source,sink);  }  static int edge2dot(Graph g)  {      assert( NULL);      int idx = 0;      int node_cnt = graph_vertex_count(g);      for(idx = 0;idx<node_cnt; idx++)      {          graph_foreach(g,idx,print_edge2dot,NULL);      }      return 0;  }     int graph2dot(Graph g)  {      fprintf(stdout,"digraph{");      node2dot(g);      edge2dot(g);      fprintf(stdout,"}n");      return 0;  }     int main(int argc, char **argv)  {      Graph g;      int i;      int j;         g = graph_create(TEST_SIZE);         assert(graph_vertex_count(g) == TEST_SIZE);         /* check it's empty */      for(i = 0; i < TEST_SIZE; i++) {          for(j = 0; j < TEST_SIZE; j++) {              assert(graph_has_edge(g, i, j) == 0);          }      }         /* check it's empty again */      for(i = 0; i < TEST_SIZE; i++) {          assert(graph_out_degree(g, i) == 0);          graph_foreach(g, i, match_sink, 0);      }         /* check edge count */      assert(graph_edge_count(g) == 0);         for(i = 0; i < TEST_SIZE; i++) {          for(j = 0; j < TEST_SIZE; j++) {              if(i < j) graph_add_edge(g, i, j);          }      }            for(i = 0; i < TEST_SIZE; i++) {          for(j = 0; j < TEST_SIZE; j++) {              assert(graph_has_edge(g, i, j) == (i < j));          }      }       assert(graph_edge_count(g) == (TEST_SIZE*(TEST_SIZE-1)/2));      graph2dot(g);      /* free it       * */      graph_destroy(g);         return 0;  }  </pre>    <p>我们这个测试程序基本测试了graph的API,同时利用graph_foreach函数的高效扩展性,输出了dot文件格式的文件我们看下执行结果。</p>    <pre>  root@manu:~/code/c/self/graph_2# gcc -o test generate_graph.c graph.c  root@manu:~/code/c/self/graph_2# ./test >test.dot  </pre>    <p>在我的Ubuntu下面用XDot可以看到test.dot已经是个图形文件了。图形如下:</p>    <p style="text-align: center;"><img src="https://simg.open-open.com/show/90665cde4cc1bd09f155f54aa7ad0cfb.png"></p>    <p>当然了,我们也可以用 dot命令绘制出PNG格式的图片来:</p>    <pre>  root@manu:~/code/c/self/graph_2# dot -T png -o graph_test.png test.dot  </pre>    <p>我们可以看到在当前目录下产生了一个文件名为graph_test.png的PNG格式的图片。打开看下和上面的图是一致的。我就不贴图了。</p>    <p> </p>    <p><strong>参考文献:</strong></p>    <p>1  Land of Lisp</p>    <p>2   <a href="/misc/goto?guid=4959727480082081906" rel="nofollow,noindex"> PineWiki </a></p>    <p>3 算法:C语言实现。</p>    <p> </p>    <p>来自:http://www.linuxeden.com/html/news/20161130/167045.html</p>    <p> </p>