Python 程序员都该用的一个库
FrancineSch
8年前
<p>我热爱 Python,这十多年来一直是我的主力编程语言。尽管期间也出现过一些有意思的语言(指的是 Haskell 和 Rust),但我还不打算换到其他语言。</p> <p>这不是说 Python 没有本身没有任何问题。在某些情况下,Python 会让你更容易犯错。尤其是一些库大量使用类继承,以及 God-object 反面模式。</p> <p>导致该情况的一个原因可能是 Python 是一种非常方便的语言,所以经验欠缺的程序员犯错误后,他们就得继续 忍受下去 。</p> <p>但我想,更重要的原因也许是,有时你努力做正确的事,但 Python 却会因此惩罚你。</p> <p>在对象设计的大背景下,“正确的事“是指设计体量小并且独立的类,只做 一件事 ,并且把这件事做好。例如,如果你的对象开始累积大量的私有方法,也许你应该将它们变成私有属性的公有方法。但是,这种事处理起来非常乏味,你可能就不会理会这些。</p> <p>如果你有一些相关的数据,而且数据之间的关系和行为是需要进行解释的,那么应该定义为对象。在 Python 中定义元组和列表非常方便。刚开始把 address = ... 写成 host, port = ... ,可能觉得没什么关系,但很快你就会到处写 [(family, socktype, proto, canonname, sockaddr)] = ... 这样的语句,这时就该后悔了。这还是算你走运的情况。如果倒霉的话,你可能得维护 values[0][7][4][HOSTNAME][“canonical”] 这样的代码,这时你的心情是痛苦,而不仅仅是后悔了。</p> <p>这就提出了一个问题:在 Python 中使用类是否是麻烦?我们来看一个简单的数据结构:一个三维直角坐标。从最简单的开始:</p> <pre> class Point3D(object):</pre> <p>到现在为止还挺好。我们已经有了一个三维点。 接下来呢?</p> <pre> class Point3D(object): def __init__(self, x, y, z):</pre> <p>其实,这是有点可惜。我只想对数据的打包,但却不得不覆盖一个 Python 运行时中的特殊方法,而且命名还是约定俗成的。但还不算太坏;毕竟所有的编程语言都是按照某种形式组成的怪异符号而已。</p> <p>至少可以看到属性名了,还能说得通。</p> <pre> class Point3D(object): def __init__(self, x, y, z): self.x</pre> <p>我已经说过,我想一个 x ,但现在必须把它指定为一个属性...</p> <pre> class Point3D(object): def __init__(self, x, y, z): self.x = x</pre> <p>绑定到 x ?呃,很明显...</p> <pre> class Point3D(object): def __init__(self, x, y, z): self.x = x self.y = y self.z = z</pre> <p>每个属性都得这么做一次,所以这相当糟糕?每个属性名都得敲 3 次?!?</p> <p>好吧。至少定义完了。</p> <pre> class Point3D(object): def __init__(self, x, y, z): self.x = x self.y = y self.z = z def __repr__(self):</pre> <p>什么,难道还没结束吗?</p> <pre> class Point3D(object): def __init__(self, x, y, z): self.x = x self.y = y self.z = z def __repr__(self): return (self.__class__.__name__ + ("(x={}, y={}, z={})".format(self.x, self.y, self.z)))</pre> <p>拜托。现在我得每个属性名敲 5 次了,如果我想在调试时知道属性到底指的是什么的话。如果定义元组的话,就不用这一步了?!?!?</p> <pre> class Point3D(object): def __init__(self, x, y, z): self.x = x self.y = y self.z = z def __repr__(self): return (self.__class__.__name__ + ("(x={}, y={}, z={})".format(self.x, self.y, self.z))) def __eq__(self, other): if not isinstance(other, self.__class__): return NotImplemented return (self.x, self.y, self.z) == (other.x, other.y, other.z)</pre> <p>敲 7 次?!?!?!?</p> <pre> class Point3D(object): def __init__(self, x, y, z): self.x = x self.y = y self.z = z def __repr__(self): return (self.__class__.__name__ + ("(x={}, y={}, z={})".format(self.x, self.y, self.z))) def __eq__(self, other): if not isinstance(other, self.__class__): return NotImplemented return (self.x, self.y, self.z) == (other.x, other.y, other.z) def __lt__(self, other): if not isinstance(other, self.__class__): return NotImplemented return (self.x, self.y, self.z) < (other.x, other.y, other.z)</pre> <p>敲 9 次?!?!?!?!?</p> <pre> from functools import total_ordering @total_ordering class Point3D(object): def __init__(self, x, y, z): self.x = x self.y = y self.z = z def __repr__(self): return (self.__class__.__name__ + ("(x={}, y={}, z={})".format(self.x, self.y, self.z))) def __eq__(self, other): if not isinstance(other, self.__class__): return NotImplemented return (self.x, self.y, self.z) == (other.x, other.y, other.z) def __lt__(self, other): if not isinstance(other, self.__class__): return NotImplemented return (self.x, self.y, self.z) < (other.x, other.y, other.z)</pre> <p>好了,擦汗 - 尽管多了 2 行代码不是很好,但至少现在我们不用定义其他比较方法了。现在一切搞定了,对吧?</p> <pre> from unittest import TestCase class Point3DTests(TestCase):</pre> <p>你知道吗? 我受够了。一个类码了 20 行,却还什么事都没做;我们这样做是想解四元方程,而不是定义“可以打印和比较的数据结构”。我陷入了大量无用的垃圾元组、列表和字典中; <strong>用 Python 定义合适的数据结构是非常麻烦的</strong> 。</p> <h3><strong>命名元组 namedtuple</strong></h3> <p>为解决这个难题,标准库给出的解决方案是使用 <a href="/misc/goto?guid=4959721428446521716" rel="nofollow,noindex">namedtuple</a> 。然而不幸的是初稿(在许多方面与 <a href="/misc/goto?guid=4959721428527114724" rel="nofollow,noindex">我自己</a> 的处理方式有相似的尴尬的和过时之处) namedtuple 仍然无法挽救这个现象。它引入了大量没有必要的公共函数,这对于兼容性维护来说简直就是一场噩梦,并且它连问题的一半都没有解决。这种做法的缺陷太多了,这里只列一些重点:</p> <ul> <li>不管你是否希望如此,它的字段都可以通过数字索引的方式访问。这意味你不能有私有属性,因为所有属性通过公开的 __getitem__ 接口暴露出来。</li> <li>它等同于有相同值的原始元组,因此很容易发生类型混乱,特别是如果你想避免使用元组和列表。</li> <li>这是一个元组,所以它总是不可变的。</li> </ul> <p>至于最后一点,你可以像这样使用:</p> <pre> Point3D = namedtuple('Point3D', ['x', 'y', 'z'])</pre> <p>在这种情况下它看起来并不像一种类;无特殊情况下,简单的语法分析工具将不能识别它为类。但是这样你不能给它添加任何其他方法,因为没有地方放任何的方法。更别提你必须输入类的名字两次。</p> <p>或者你可以使用继承:</p> <pre> class Point3D(namedtuple('_Point3DBase', 'x y z'.split())): pass</pre> <p>尽管这样可以添加方法和文档字符串,看起来也像一个类,但是内部名称(在 repr 中显示的内容,并不是类的真实名称)变的很怪了。同时,你还不知不觉中把没列出的属性变成了可变的,这是添加 class 声明的一个奇怪的副作用;除非你在类主体中添加 __slots__='X Y z'.split() ,但这样又回到了每个属性名必须敲两次的情况。</p> <p>而且,我们还没提科学已经证明 不应该使用继承 呢。</p> <p>因此,如果你只能选命名元组,那就选命名元组吧,也算是改进,虽然只是在部分情况下如此。</p> <h2><strong>使用 attrs</strong></h2> <p>这时该我最喜欢的 Python 库出场了。</p> <p>pip install attrs</p> <p>我们重新审视一下上述问题。如何使用 attrs 库编写 Point3D ?</p> <pre> import attr @attr.s</pre> <p>由于它还没有内置到 Python 中,所以必须用以上 2 行开始:导入包然后使用类装饰器。</p> <pre> import attr @attr.s class Point3D(object):</pre> <p>你看,没有继承!通过使用类装饰器, Point3D 仍然是一个普通的 Python 类(尽管我们一会会看到一些双下划线方法)。</p> <pre> import attr @attr.s class Point3D(object): x = attr.ib()</pre> <p>添加属性 x 。</p> <pre> import attr @attr.s class Point3D(object): x = attr.ib() y = attr.ib() z = attr.ib()</pre> <p>再分别添加属性 y 和 z 。这样就完成了。</p> <p>这就 OK 了? 等等。不用定义字符串表示吗?</p> <pre> >>> Point3D(1, 2, 3) Point3D(x=1, y=2, z=3)</pre> <p>怎么进行比较?</p> <pre> >>> Point3D(1, 2, 3) == Point3D(1, 2, 3) True >>> Point3D(3, 2, 1) == Point3D(1, 2, 3) False >>> Point3D(3, 2, 3) > Point3D(1, 2, 3) True</pre> <p>好的。但如果我想将有明确属性定义的数据提取为适合 JSON 序列化的格式呢?</p> <pre> >>> attr.asdict(Point3D(1, 2, 3)) {'y': 2, 'x': 1, 'z': 3}</pre> <p>也许上边有一点点准确。即使如此,因为使用了 attrs 后,很多事情都变得更简单了,它允许你在类上声明字段,以及相关的元数据。</p> <pre> >>> import pprint >>> pprint.pprint(attr.fields(Point3D)) (Attribute(name='x', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None), Attribute(name='y', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None), Attribute(name='z', default=NOTHING, validator=None, repr=True, cmp=True, hash=True, init=True, convert=None))</pre> <p>我不打算在这里深入介绍 attrs 的每一个有趣的功能;你可以 阅读它的文档 。另外,项目会经常更新,每隔一段时间都会有新的东西出现,因此我也可能会漏掉一些重要的功能。但是用上 attrs 之后 ,你会发现它所做的正式此前 Python 所缺乏的:</p> <ol> <li>它让你简洁地定义类型,而不是通过手动键入 def __init __ 的方式来定义。</li> <li>它让你直接地说出你声明的意思,而不是拐弯抹角的表达它。与其这样说:“我有一个类型,它被称为 MyType ,它有一个构造函数,在构造函数中用参数 'A' 给属性 'A' 赋值”,而是应该这样说:“我有一个类型,它被称为 MyType ,它有一个属性叫做 a ,以及跟它相关的方法“,而不必通过逆向工程猜测它的方法(例如,在一个实例中运行 dir ,或查看 self.__ class__. __dict__ )。</li> <li>它提供了有用的默认方法,而不像 Python 中的默认行为有时有用,大部分时候没用。</li> <li>它从简单的开始,但是提供了后续添加更严谨实现的空间。</li> </ol> <p>我们详细说明最后一点。</p> <h3><strong>逐步改善</strong></h3> <p>虽然我不打算谈及每一个功能,但如果我没有提到以下几个特点,那我就太不负责任了。你可以从上面这些特别长的 Attribute 的 repr() 中看到一些有趣的东西。</p> <p>例如:你通过用 @attr.s 修饰类来验证属性。比如:Point3D 这个类,应该包含数字。为简单起见,我们可以说这些数字为 float 类型,像这样:</p> <pre> import attr from attr.validators import instance_of @attr.s class Point3D(object): x = attr.ib(validator=instance_of(float)) y = attr.ib(validator=instance_of(float)) z = attr.ib(validator=instance_of(float))</pre> <p>因为我们使用了 attrs ,这意味着之后有机会进行验证:可以只给每个需要的属性添加类型信息。其中的一些功能,可以让我们避免常见的错误。例如,这是一个很常见的“找 Bug” 面试题:</p> <pre> class Bag: def __init__(self, contents=[]): self._contents = contents def add(self, something): self._contents.append(something) def get(self): return self._contents[:]</pre> <p>修正它,正确的代码应该是这个样子:</p> <pre> class Bag: def __init__(self, contents=None): if contents is None: contents = [] self._contents = contents</pre> <p>额外添加了 2 行代码。</p> <p>这样, contents 无意间就成了全局变量,这使得所有没有提供列表的 Bag 对象都共享一个列表。使用 attrs 的话,就变成这样:</p> <pre> @attr.s class Bag: _contents = attr.ib(default=attr.Factory(list)) def add(self, something): self._contents.append(something) def get(self): return self._contents[:]</pre> <p>attrs 还提供一些其他的特性,让你在构建类时更方便更正确。另一个很好的例子?如果你严格的管控对象的属性(或在内存使用上更有效率的 CPython ),你可以在类层级上使用 slots=True - 例如 @attr.s(slots=True) - 自动与 attrs 声明的 __slots__ 属性匹配。所有这些功能会让通过 attr.ib() 声明的属性更好更强大。</p> <h2><strong>未来的 Python</strong></h2> <p>有人为以后能普遍使用 Python 3 编程而感到高兴。而我期待的是,能够在 Python 编程时一直用 attrs 。就我所知,它对每个使用了的代码库都产生了积极、微妙的影响。</p> <p>试试看:你可能会惊讶地发现,以前用不方便写文档的元组、列表或字典的地方,现在可以使用具备清晰解释的类了。既然编写结构清晰的类型如此简单方便,以后应该会经常使用 attrs 的。这对你的代码来说是件好事;我就是一个好例子。</p> <p> </p> <p> </p> <p>来自:http://www.codingpy.com/article/attrs-one-library-everyone-needs/</p> <p> </p>