大牛的经验之谈:数据库查询速度优化技巧及解决方案

SherleneWhi 8年前
   <h2><strong>摘要</strong></h2>    <p>从事前端开发的都知道,页面显示的数据一定要及时的呈现,否则会影响用户体现.那么导致页面加载数据慢或者显示滞后的原因又是什么呢?</p>    <p>拿自己之前做项目经历给大家讲讲吧,之前做后台,当时的项目实时性都非常高,前端页面实时显示要求非常高 ,慢1秒显示都会导致用户的投诉,最后没办法,通过本地(磁盘)缓存跟数据表分割来解决这一问题.</p>    <p><strong>原因分析</strong></p>    <p><strong>主要原因1:</strong> 后台数据库中的数据过多,没做数据优化导致后台查询数据很慢</p>    <p><strong>次要原因2:</strong> 前端数据请求-解析-展示过程处理不当</p>    <p><strong>次要原因3:</strong> 网络问题所致</p>    <p><strong>那么我们应该怎么做后台数据优化呢?</strong></p>    <p><strong>解决问题</strong></p>    <p><strong>这里总结了几种方案,如何提高数据库查询的速度,大家参考.</strong></p>    <p>1、缓存,在持久层或持久层之上做缓存</p>    <p>使用ehcache缓存,这个一般用于持久层的缓存,提供持久层、业务层的快速缓存,hibenate默认使用的二级缓存就是ehcache;</p>    <p>2、数据库表的大字段剥离</p>    <p>假如一个表的字段数有100多个,学会拆分字段,保证单条记录的数据量很小;</p>    <p>3、恰当地使用索引</p>    <p>必要时建立多级索引,分析MySQL的执行计划,通过表数据统计等方式协助数据库走正确的查询方式,该走索引就走索引,该走全表扫描就走全表扫描;</p>    <p>4、表的拆分</p>    <p>表分区和拆分,无论是业务逻辑上的拆分(如一个月一张报表、分库)还是无业务含义的分区(如根据ID取模分区);</p>    <p>5、字段冗余</p>    <p>减少跨库查询和大表连接操作;,数据通过单个或多个JOB生成出来,减少实时查询;</p>    <p>6、从磁盘上做文章</p>    <p>数据存放的在磁盘的内、外磁道上,数据获取的效率都是不一样的;</p>    <p>7、放弃关系数据库的某些特性</p>    <p>引入NoSQL数据库;</p>    <p>换种思路存放数据,例如搜索中的倒排表;</p>    <p><strong>在上面谈到数据库查询速度优化方案我们讲到了,数据优化的几种方案。接下来,一起看如何实际到具体的操作上.也就是我们在写数据时我们应该注意些什么?</strong></p>    <p><strong>1、对查询进行优化,应尽可能避免全表扫描</strong></p>    <p>首先应考虑在 where 及 order by 涉及的列上建立索引。</p>    <p>下面我们来以一个表中177条数据比较一下,全表扫描与建立索引之后性能的一个比较.</p>    <p>1.1 全表查询</p>    <p style="text-align: center;"><img src="https://simg.open-open.com/show/69e7d0baa587c3a2f40ad6d856702d0f.jpg"></p>    <p>1.2 建立索引查询</p>    <p style="text-align: center;"><img src="https://simg.open-open.com/show/ca2212565e4ef88b2c437912f24ccfed.jpg"></p>    <p>1.3 结论</p>    <p>从这两种方式查询数据库结果看,建立索引之后查询速度提高了些,现在数据量还不明显,如果表中有10万条速度,差异就会很明显了.</p>    <p><strong>2、写数据语句时尽可能减少表的全局扫描</strong></p>    <p>2.1 减少where 字段值null判断</p>    <p><img src="https://simg.open-open.com/show/ded412b387c50cfdf77d0d728583c904.png"></p>    <p>如何这样做,就会导致引擎放弃使用索引而进行全表扫描</p>    <p>应该这样去设置(也就是在没有值时,我们在存数据库时自动默认给个o值,而不是什么都不写):</p>    <p><img src="https://simg.open-open.com/show/7b487f814f6576cde51db21a0b8cb3bb.png"></p>    <p>2.2 应尽量避免在 where 子句中使用!=或<>操作符</p>    <p><img src="https://simg.open-open.com/show/0762cf5a6c114a6fd3cfed4ff30f366f.png"></p>    <p>这样写将导致引擎放弃使用索引而进行全表扫描。</p>    <p>2.3 应尽量避免在 where 子句中使用 or 来连接条件</p>    <p><img src="https://simg.open-open.com/show/4e66ecbb38d20cdacd56f736002acbe8.png"></p>    <p>这样将导致引擎放弃使用索引而进行全表扫描</p>    <p>可以这样操作:</p>    <p><img src="https://simg.open-open.com/show/2fc77485506a6300701d86fc4813cdd4.png"></p>    <p>2.4 in 和 not in 也要慎用</p>    <p><img src="https://simg.open-open.com/show/68ccdce341a4b896b535fc0a776a586e.png"></p>    <p>这样操作,也会导致全表扫描</p>    <p><img src="https://simg.open-open.com/show/2846ded9a1a9fbb8bfd6ef55414974f0.jpg"></p>    <p>以通配符*去查询所有数据,这样做也是非常耗时的,我们应该需要什么字段就查询什么字段.</p>    <p>应该这样做:</p>    <p><strong>3、不要在条件判断时进行 算数运算</strong></p>    <p>所以不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,这样系统将可能无法正确使用索引</p>    <p>应该这样做:</p>    <p><strong>4、很多时候用 exists 代替 in 是一个好的选择</strong></p>    <p><img src="https://simg.open-open.com/show/9e8ec15de528a13b6bb10b042b1a9a37.png"></p>    <p><strong>5 论索引技巧</strong></p>    <p>5.1 并不是所有索引对查询都有效</p>    <p>SQL是根据表中数据来进行查询优化的,当索引列有大量数据重复时,SQL查询可能不会去利用索引,如一表中有字段sex,male、female几乎各一半,那么即使在sex上建了索引也对查询效率起不了作用。</p>    <p>5.2 索引并不是越多越好</p>    <p>索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。</p>    <p>5.3 应尽可能的避免更新 clustered 索引数据列</p>    <p>因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。</p>    <p>5.4 尽量使用数字型字段</p>    <p>若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。</p>    <p><strong>6 创建数据库时应该注意地方</strong></p>    <p>6.1. 尽可能的使用 varchar/nvarchar 代替 char/nchar</p>    <p>因为首先变长字段存储空间小,可以节省存储空间,其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。</p>    <p>6.2 用表变量来代替临时表。</p>    <p>1. 如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。</p>    <p>2. 在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。</p>    <p>3. 如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。</p>    <p>4. 避免频繁创建和删除临时表,以减少系统表资源的消耗。</p>    <p><strong>7. 尽量避免使用游标</strong></p>    <p>1. 因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。</p>    <p>2. 使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。</p>    <p>3. 与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。</p>    <p><strong>8 数据放回时注意什么</strong></p>    <p>8.1 尽量避免大事务操作,提高系统并发能力。</p>    <p>这样可以有效提高系统的并发能力</p>    <p>8.2 尽量避免向客户端返回大数据量</p>    <p>若数据量过大,应该考虑相应需求是否合理。</p>    <p> </p>    <p> </p>    <p>来自:http://www.jianshu.com/p/fea61b518dc4</p>    <p> </p>