Flink 原理与实现:如何生成 StreamGraph

nwfj2581 9年前
   <p>继上文 <a href="http://www.open-open.com/lib/view/open1462323115590.html">Flink 原理与实现:架构和拓扑概览</a> 中介绍了Flink的四层执行图模型,本文将主要介绍 Flink 是如何根据用户用Stream API编写的程序,构造出一个代表拓扑结构的StreamGraph的。</p>    <p>注:本文比较偏源码分析,所有代码都是基于 flink-1.0.x 版本,建议在阅读本文前先对Stream API有个了解,详见 <a href="/misc/goto?guid=4959672280338512252" rel="nofollow,noindex">官方文档</a> 。</p>    <p>StreamGraph 相关的代码主要在 org.apache.flink.streaming.api.graph 包中。构造StreamGraph的入口函数是 StreamGraphGenerator.generate(env, transformations) 。该函数会由触发程序执行的方法 StreamExecutionEnvironment.execute() 调用到。也就是说 StreamGraph 是在 Client 端构造的,这也意味着我们可以在本地通过调试观察 StreamGraph 的构造过程。</p>    <h2>Transformation</h2>    <p>StreamGraphGenerator.generate 的一个关键的参数是 List<StreamTransformation<?>> 。 StreamTransformation 代表了从一个或多个 DataStream 生成新 DataStream 的操作。 DataStream 的底层其实就是一个 StreamTransformation ,描述了这个 DataStream 是怎么来的。</p>    <p>StreamTransformation的类图如下图所示:</p>    <p><img src="https://simg.open-open.com/show/e4887e5656c77939e4459cff7515f44c.png"></p>    <p>DataStream 上常见的 transformation 有 map、flatmap、filter等(见 <a href="/misc/goto?guid=4959672280422365277" rel="nofollow,noindex">DataStream Transformation</a> 了解更多)。这些transformation会构造出一棵 StreamTransformation 树,通过这棵树转换成 StreamGraph。比如 DataStream.map 源码如下,其中 SingleOutputStreamOperator 为DataStream的子类:</p>    <pre>  <code class="language-java">public <R> SingleOutputStreamOperator<R> map(MapFunction<T, R> mapper) {    // 通过java reflection抽出mapper的返回值类型    TypeInformation<R> outType = TypeExtractor.getMapReturnTypes(clean(mapper), getType(),        Utils.getCallLocationName(), true);      // 返回一个新的DataStream,SteramMap 为 StreamOperator 的实现类    return transform("Map", outType, new StreamMap<>(clean(mapper)));  }    public <R> SingleOutputStreamOperator<R> transform(String operatorName, TypeInformation<R> outTypeInfo, OneInputStreamOperator<T, R> operator) {    // read the output type of the input Transform to coax out errors about MissingTypeInfo    transformation.getOutputType();      // 新的transformation会连接上当前DataStream中的transformation,从而构建成一棵树    OneInputTransformation<T, R> resultTransform = new OneInputTransformation<>(        this.transformation,        operatorName,        operator,        outTypeInfo,        environment.getParallelism());      @SuppressWarnings({ "unchecked", "rawtypes" })    SingleOutputStreamOperator<R> returnStream = new SingleOutputStreamOperator(environment, resultTransform);      // 所有的transformation都会存到 env 中,调用execute时遍历该list生成StreamGraph    getExecutionEnvironment().addOperator(resultTransform);      return returnStream;  }  </code></pre>    <p>从上方代码可以了解到,map转换将用户自定义的函数 MapFunction 包装到 StreamMap 这个Operator中,再将 StreamMap 包装到 OneInputTransformation ,最后该transformation存到env中,当调用 env.execute 时,遍历其中的transformation集合构造出StreamGraph。其分层实现如下图所示:</p>    <p><img src="https://simg.open-open.com/show/92f4cfb14798149881b746ec895ca5ed.png"></p>    <p>另外,并不是每一个 StreamTransformation 都会转换成 runtime 层中物理操作。有一些只是逻辑概念,比如 union、split/select、partition等。如下图所示的转换树,在运行时会优化成下方的操作图。</p>    <p><img src="https://simg.open-open.com/show/79371524f1ec00f9c90c18a932fa9002.png"></p>    <p>union、split/select、partition中的信息会被写入到 Source –> Map 的边中。通过源码也可以发现, UnionTransformation , SplitTransformation , SelectTransformation , PartitionTransformation 由于不包含具体的操作所以都没有StreamOperator成员变量,而其他StreamTransformation的子类基本上都有。</p>    <h2>StreamOperator</h2>    <p>DataStream 上的每一个 Transformation 都对应了一个 StreamOperator,StreamOperator是运行时的具体实现,会决定UDF(User-Defined Funtion)的调用方式。下图所示为 StreamOperator 的类图(点击查看大图):</p>    <p><img src="https://simg.open-open.com/show/8e38c6140860ac0afae095d56b5317d1.png"></p>    <p>可以发现,所有实现类都继承了 AbstractStreamOperator 。另外除了 project 操作,其他所有可以执行UDF代码的实现类都继承自 AbstractUdfStreamOperator ,该类是封装了UDF的StreamOperator。UDF就是实现了 Function 接口的类,如 MapFunction , FilterFunction 。</p>    <h2>生成 StreamGraph 的源码分析</h2>    <p>我们通过在DataStream上做了一系列的转换(map、filter等)得到了StreamTransformation集合,然后通过 StreamGraphGenerator.generate 获得StreamGraph,该方法的源码如下:</p>    <pre>  <code class="language-java">// 构造 StreamGraph 入口函数  public static StreamGraph generate(StreamExecutionEnvironment env, List<StreamTransformation<?>> transformations) {      return new StreamGraphGenerator(env).generateInternal(transformations);  }    // 自底向上(sink->source)对转换树的每个transformation进行转换。  private StreamGraph generateInternal(List<StreamTransformation<?>> transformations) {    for (StreamTransformation<?> transformation: transformations) {      transform(transformation);    }    return streamGraph;  }    // 对具体的一个transformation进行转换,转换成 StreamGraph 中的 StreamNode 和 StreamEdge  // 返回值为该transform的id集合,通常大小为1个(除FeedbackTransformation)  private Collection<Integer> transform(StreamTransformation<?> transform) {      // 跳过已经转换过的transformation    if (alreadyTransformed.containsKey(transform)) {      return alreadyTransformed.get(transform);    }      LOG.debug("Transforming " + transform);      // 为了触发 MissingTypeInfo 的异常    transform.getOutputType();      Collection<Integer> transformedIds;    if (transform instanceof OneInputTransformation<?, ?>) {      transformedIds = transformOnInputTransform((OneInputTransformation<?, ?>) transform);    } else if (transform instanceof TwoInputTransformation<?, ?, ?>) {      transformedIds = transformTwoInputTransform((TwoInputTransformation<?, ?, ?>) transform);    } else if (transform instanceof SourceTransformation<?>) {      transformedIds = transformSource((SourceTransformation<?>) transform);    } else if (transform instanceof SinkTransformation<?>) {      transformedIds = transformSink((SinkTransformation<?>) transform);    } else if (transform instanceof UnionTransformation<?>) {      transformedIds = transformUnion((UnionTransformation<?>) transform);    } else if (transform instanceof SplitTransformation<?>) {      transformedIds = transformSplit((SplitTransformation<?>) transform);    } else if (transform instanceof SelectTransformation<?>) {      transformedIds = transformSelect((SelectTransformation<?>) transform);    } else if (transform instanceof FeedbackTransformation<?>) {      transformedIds = transformFeedback((FeedbackTransformation<?>) transform);    } else if (transform instanceof CoFeedbackTransformation<?>) {      transformedIds = transformCoFeedback((CoFeedbackTransformation<?>) transform);    } else if (transform instanceof PartitionTransformation<?>) {      transformedIds = transformPartition((PartitionTransformation<?>) transform);    } else {      throw new IllegalStateException("Unknown transformation: " + transform);    }      // need this check because the iterate transformation adds itself before    // transforming the feedback edges    if (!alreadyTransformed.containsKey(transform)) {      alreadyTransformed.put(transform, transformedIds);    }      if (transform.getBufferTimeout() > 0) {      streamGraph.setBufferTimeout(transform.getId(), transform.getBufferTimeout());    }    if (transform.getUid() != null) {      streamGraph.setTransformationId(transform.getId(), transform.getUid());    }      return transformedIds;  }  </code></pre>    <p>最终都会调用 transformXXX 来对具体的StreamTransformation进行转换。我们可以看下 transformOnInputTransform(transform) 的实现:</p>    <pre>  <code class="language-java">private <IN, OUT> Collection<Integer> transformOnInputTransform(OneInputTransformation<IN, OUT> transform) {    // 递归对该transform的直接上游transform进行转换,获得直接上游id集合    Collection<Integer> inputIds = transform(transform.getInput());      // 递归调用可能已经处理过该transform了    if (alreadyTransformed.containsKey(transform)) {      return alreadyTransformed.get(transform);    }      String slotSharingGroup = determineSlotSharingGroup(transform.getSlotSharingGroup(), inputIds);      // 添加 StreamNode    streamGraph.addOperator(transform.getId(),        slotSharingGroup,        transform.getOperator(),        transform.getInputType(),        transform.getOutputType(),        transform.getName());      if (transform.getStateKeySelector() != null) {      TypeSerializer<?> keySerializer = transform.getStateKeyType().createSerializer(env.getConfig());      streamGraph.setOneInputStateKey(transform.getId(), transform.getStateKeySelector(), keySerializer);    }      streamGraph.setParallelism(transform.getId(), transform.getParallelism());      // 添加 StreamEdge    for (Integer inputId: inputIds) {      streamGraph.addEdge(inputId, transform.getId(), 0);    }      return Collections.singleton(transform.getId());  }  </code></pre>    <p>该函数首先会对该transform的上游transform进行递归转换,确保上游的都已经完成了转化。然后通过transform构造出StreamNode,最后与上游的transform进行连接,构造出StreamNode。</p>    <p>最后再来看下对逻辑转换(partition、union等)的处理,如下是 transformPartition 函数的源码:</p>    <pre>  <code class="language-java">private <T> Collection<Integer> transformPartition(PartitionTransformation<T> partition) {    StreamTransformation<T> input = partition.getInput();    List<Integer> resultIds = new ArrayList<>();      // 直接上游的id    Collection<Integer> transformedIds = transform(input);    for (Integer transformedId: transformedIds) {      // 生成一个新的虚拟id      int virtualId = StreamTransformation.getNewNodeId();      // 添加一个虚拟分区节点,不会生成 StreamNode      streamGraph.addVirtualPartitionNode(transformedId, virtualId, partition.getPartitioner());      resultIds.add(virtualId);    }      return resultIds;  }  </code></pre>    <p>对partition的转换没有生成具体的StreamNode和StreamEdge,而是添加一个虚节点。当partition的下游transform(如map)添加edge时(调用 StreamGraph.addEdge ),会把partition信息写入到edge中。如 StreamGraph.addEdgeInternal 所示:</p>    <pre>  <code class="language-java">public void addEdge(Integer upStreamVertexID, Integer downStreamVertexID, int typeNumber) {    addEdgeInternal(upStreamVertexID, downStreamVertexID, typeNumber, null, new ArrayList<String>());  }  private void addEdgeInternal(Integer upStreamVertexID,   Integer downStreamVertexID,   int typeNumber,   StreamPartitioner<?> partitioner,   List<String> outputNames) {      // 当上游是select时,递归调用,并传入select信息    if (virtualSelectNodes.containsKey(upStreamVertexID)) {      int virtualId = upStreamVertexID;      // select上游的节点id      upStreamVertexID = virtualSelectNodes.get(virtualId).f0;      if (outputNames.isEmpty()) {        // selections that happen downstream override earlier selections        outputNames = virtualSelectNodes.get(virtualId).f1;      }      addEdgeInternal(upStreamVertexID, downStreamVertexID, typeNumber, partitioner, outputNames);    }     // 当上游是partition时,递归调用,并传入partitioner信息    else if (virtuaPartitionNodes.containsKey(upStreamVertexID)) {      int virtualId = upStreamVertexID;      // partition上游的节点id      upStreamVertexID = virtuaPartitionNodes.get(virtualId).f0;      if (partitioner == null) {        partitioner = virtuaPartitionNodes.get(virtualId).f1;      }      addEdgeInternal(upStreamVertexID, downStreamVertexID, typeNumber, partitioner, outputNames);    } else {      // 真正构建StreamEdge      StreamNode upstreamNode = getStreamNode(upStreamVertexID);      StreamNode downstreamNode = getStreamNode(downStreamVertexID);        // 未指定partitioner的话,会为其选择 forward 或 rebalance 分区。      if (partitioner == null && upstreamNode.getParallelism() == downstreamNode.getParallelism()) {        partitioner = new ForwardPartitioner<Object>();      } else if (partitioner == null) {        partitioner = new RebalancePartitioner<Object>();      }        // 健康检查, forward 分区必须要上下游的并发度一致      if (partitioner instanceof ForwardPartitioner) {        if (upstreamNode.getParallelism() != downstreamNode.getParallelism()) {          throw new UnsupportedOperationException("Forward partitioning does not allow " +              "change of parallelism. Upstream operation: " + upstreamNode + " parallelism: " + upstreamNode.getParallelism() +              ", downstream operation: " + downstreamNode + " parallelism: " + downstreamNode.getParallelism() +              " You must use another partitioning strategy, such as broadcast, rebalance, shuffle or global.");        }      }      // 创建 StreamEdge      StreamEdge edge = new StreamEdge(upstreamNode, downstreamNode, typeNumber, outputNames, partitioner);      // 将该 StreamEdge 添加到上游的输出,下游的输入      getStreamNode(edge.getSourceId()).addOutEdge(edge);      getStreamNode(edge.getTargetId()).addInEdge(edge);    }  }  </code></pre>    <h2>总结</h2>    <p>本文主要介绍了 Stream API 中 Transformation 和 Operator 的概念,以及如何根据Stream API编写的程序,构造出一个代表拓扑结构的StreamGraph的。本文的源码分析涉及到较多代码,如果有兴趣建议结合完整源码进行学习。下一篇文章将介绍 StreamGraph 如何转换成 JobGraph 的,其中设计到了图优化的技巧。</p>    <p>来自: <a href="/misc/goto?guid=4959672280506114231" rel="nofollow">http://wuchong.me/blog/2016/05/04/flink-internal-how-to-build-streamgraph</a></p>