使用开源软件快速搭建数据分析平台
来自: http://my.oschina.net/taogang/blog/630632
这些产品的目标应该都是self service的BI,利用可视化提供数据探索的功能,并且加入机器学习和预测的功能。它们对标的产品应该是Tableau或者SAP Lumira。因为笔者曾经为Lumira开发数据可视化的功能,对这一块很感兴趣,于是就试用了一下这些产品,感觉这些产品似乎还有很大的差距,于是就想自己用开源软件搭一个简单的数据分析平台试试看。
代码在这里 https://github.com/gangtao/dataplay2
废话少说,上架构图:
列一下主要用到的开源软件:
服务器端:
flask http://flask.pocoo.org/
轻量级的Python Web框架
pandas http://pandas.pydata.org/
Python的数据结构和数据分析工具包,提供数据处理的Wrangling的功能
sklearn http://scikit-learn.org/
非常流行的Python机器学习包,依赖于numpy,scipy和matplotlib
客户端:
jquery
这个就不用介绍了
reactjs http://非死book.github.io/react/
非死book开发的js UI框架,基于组件(component)而非mvc
d3js https://d3js.org/
数据驱动的DOM操纵库,可以创建丰富的数据可视化呈现。
echarts http://www.oschina.net/p/echarts
百度开发的数据可视化库,基于canvas技术,功能丰富。实为中国开源项目的翘楚。
bootstrap http://getbootstrap.com/
推ter开发的前端框架,非常流行。
jquery datatables http://www.datatables.net/
非常实用的基于jquery的表格控件
bootstrap fielinput https://github.com/kartik-v/bootstrap-fileinput
HTML5文件上传控件
papaparse https://github.com/mholt/PapaParse
CSV文件的JS解析
requirejs http://www.requirejs.org/
JS 依赖管理
select2 https://select2.github.io/
基于jquery的select控件
开发构建工具
nodejs https://nodejs.org/en/
这个应该也不用介绍
babel https://babeljs.io/
javascript的编译器,支持把ES6的代码转换成浏览器可执行的代码,这里主要是为了支持reactjs使用的jsx的编译。
好了,罗列了这么多的开源软件后,我们看看dataplay2的功能,然后看看这些开源软件起到的作用和我为什么要选择它们的原因。
在介入正题之前,我们先聊聊dataplay2这个名字,dataplay很容易理解,我希望创建一个简单易用的数据平台,使用起来像玩一样的愉快。但为什么是2呢?因为这个软件很二么?当然不是。其实我之前写过一个dataplay的,当时的架构略有不同,为了使用R里的ggplot来支持语法驱动的可视化方案,我后台使用了R/Python的桥接方案,前台的可视化操作会生成ggplot的命令,好处是可以有一个统一的数据模型和语法来驱动数据的可视化分析,便于用户进行数据的探索。然而这样的架构太复杂了,服务器端既有R又有Python,我自己都看不下去了,后来就放弃了。新的dataplay2使用echart的图表库来做可视化,优缺点我们后面再聊。
好了,运行dataplay2非常简单,下载github上的code后,建议安装anaconda,所有的Python依赖就都准备好了,进入dataplay2/package目录,运行:
python main.py
然后在浏览器中键入 localhost:5000启动客户端。
首先我们进入数据菜单
在这个页面,用户可以浏览已有的数据,或者上传一个CSV文件,增加一个数据集。
简单介绍一下这一部分的实现。
数据上传用到了file input控件,数据表用了datatable控件。为了方便CSV文件直接存贮在本地文件系统中。后台用pandas对csv文件进行处理。前台用Rest API读取csv文件,然后用papaparse解析后,展现在数据表中。这样做纯粹是为了方便,因为整个POC是我在假期花了3/4天做的,所以怎么方便怎么来。更好的做法是在后台用Python对CSV文件作解析。
注意这里我们对上传的CSV文件有严格的要求,必须有首行的header,末尾不能有空行。
有了数据后,就可以开始做分析了。首先我们看看可视化的分析。点击菜单Analysis/Visualization
例如我们选定Iris数据源做一个Scatter Plot
可视化这一块的主要工作是从CSV的表结构数据,根据数据绑定,变形到echart的数据结构。因为echart并没有一个统一的数据模型,所以每一个类型的图表都需要有对应的数据变形的逻辑 。(代码 package/static/js/visualization )
现在主要的做了Pie,Bar,Line,Treemap,Scatter, Area这几种chart。
现在用下来感觉echart优缺点都很明显,他提供的辅助功能很好,可以方便的增加辅助线,note,存贮为图形等。但是由于缺乏统一的数据模型扩展起来比较麻烦,我希望有时间试用一下plotly,当然highchart是非常成熟的图表库,无需证明。
其实我希望能找到一个ggplot的D3的实现,例如这个http://benjh33.github.io/ggd3/ ,可惜该项目似乎不活跃了。
除了基于可视化的分析功能,还有机器学习的功能。
分类
分类的算法可以使用KNN,Bayes和SVM。
如果选择两个Feature做预测,我用D3画出了该预测的模型。大于两个时,就没有办法画出来了。
然后用户可以选择基于该模型来做预测。
聚类和回归的功能和分类基本一致。
聚类
聚类算法现在实现了Kmeans
线性回归
逻辑回归
基本功能就这些了,这里列出一些我想要实现的功能:
数据源
现在的数据源只有CSV文件,可以考虑更多的数据源支持,例如数据库/数据仓库,REST调用,流等等。
数据模型
现在的数据模型比较简单,就是pandas的dataframe或者一个简单的cvs的表结构。可以考虑引入数据库。另外还需要增加对层级数据(hierachical)的支持
数据变形
数据变形是数据分析的必要准备工作。业内有很多专注于数据准备的产品,例如paxata,trifacta
这个版本的dataplay没有任何的数据变形和准备的功能,其实pandas有非常丰富的data wrangling的功能,我希望能在这之上包装一个data wrangling的DSL,可以让用户快速的进行数据准备。
可视化库
Baidu的echart是非常优秀的可视化库,可是用于数据探索时,还不够好。希望能有一套类似ggplot的前端可视化库来使用。另外地图功能和层级化的图表也是数据分析常见的功能。
还需要加入图表的选项
仪表盘功能
这个版本的dataplay没有仪表盘功能,这个功能是数据分析软件的标配,必须有。pyxley似乎是个不错的选择,也和dataplay的架构一致(python,reactjs),有时间可以尝试一下
机器学习和预测
dataplay现在实现了最简单的一些机器学习的算法,我觉得方向应该是面向用户,变得更简单,用户只给出简单的选项,例如要预测的目标属性,和用于预测的属性,然后自动的选择算法。另外需要更方便的对算法进行扩展。
好了,最后谈谈简单的感受
reactjs真不错,一直不喜欢MVC,reactjs的组件化用起来更舒服,而且开发效率确实高,整个项目我用假期3/4天完成,react功不可没。
dataplay现在的功能还比较弱,但是基本的架构已经搭好了,大家喜欢的话可以拿去扩展。我不一定会有时间继续对它的功能增强,但是欢迎大家和我一起讨论。