ElasticSearch Aggregations 分析

JasFranklyn 9年前

来自: http://www.jianshu.com/p/56ad2b7e27b7

承接上篇文章 ElasticSearch Rest/RPC 接口解析 ,这篇文章我们重点分析让ES步入数据分析领域的Aggregation相关的功能和设计。

前言

我记得有一次到一家公司做内部分享,然后有研发问我,即席分析这块,他们用ES遇到一些问题。我当时直接就否了,我说ES还是个全文检索引擎,如果要做分析,还是应该用Impala,Phenix等这种主打分析的产品。随着ES的发展,我现在对它的看法,也有了比较大的变化。而且我认为ES+Spark SQL组合可以很好的增强即席分析能够处理的数据规模,并且能够实现复杂的逻辑,获得较好的易用性。

需要说明的是,我对这块现阶段的理解也还是比较浅。问题肯定有不少,欢迎指正。

Aggregations的基础

Lucene 有三个比较核心的概念:

  1. 倒排索引
  2. fieldData/docValue
  3. Collector

倒排索引不用我讲了,就是term -> doclist的映射。

fieldData/docValue 你可以简单理解为列式存储,索引文件的所有文档的某个字段会被单独存储起来。 对于这块,Lucene 经历了两阶段的发展。第一阶段是fieldData ,查询时从倒排索引反向构成doc-term。这里面有两个问题:

  • 数据需要全部加载到内存
  • 第一次构建会很慢

这两个问题其实会衍生出很多问题:最严重的自然是内存问题。所以lucene后面搞了DocValue,在构建索引的时候就生成这个文件。DocValue可以充分利用操作系统的缓存功能,如果操作系统cache住了,则速度和内存访问是一样的。

另外就是Collector的概念,ES的各个Aggregator 实现都是基于Collector做的。我觉得你可以简单的理解为一个迭代器就好,所有的候选集都会调用 Collector.collect(doc) 方法,这里collect == iterate 可能会更容易理解些。

ES 能把聚合做快,得益于这两个数据结构,一个迭代器。我们大部分聚合功能,其实都是在fieldData/docValue 上工作的。

Aggregations 分类

Aggregations种类分为:

  1. Metrics
  2. Bucket

Metrics 是简单的对过滤出来的数据集进行avg,max等操作,是一个单一的数值。

Bucket 你则可以理解为将过滤出来的数据集按条件分成多个小数据集,然后Metrics会分别作用在这些小数据集上。

对于最后聚合出来的结果,其实我们还希望能进一步做处理,所以有了Pipline Aggregations,其实就是组合一堆的Aggregations 对已经聚合出来的结果再做处理。

Aggregations 类设计

下面是一个聚合的例子:

{      "aggregations": {          "user": {              "terms": {                  "field": "user",                  "size": 10,                  "order": {                      "_count": "desc"                  }              }          }      }  }

其语义类似这个sql 语句: select count(*) as user_count group by user order by user_count desc 。

对于Aggregations 的解析,基本是顺着下面的路径分析:

TermsParser ->            TermsAggregatorFactory ->                     GlobalOrdinalsStringTermsAggregator

在实际的一次query里,要做如下几个阶段:

  1. Query Phase 此时 会调用GlobalOrdinalsStringTermsAggregator的Collector 根据user 的不同进行计数。

  2. RescorePhase

  3. SuggestPhase

  4. AggregationPhase 在该阶段会会执行实际的aggregation build, aggregator.buildAggregation(0) ,也就是一个特定Shard(分片)的聚合结果

  5. MergePhase。这一步是由接受到请求的ES来完成,具体负责执行Merge(Reduce)操作 SearchPhaseController.merge 。这一步因为会从不同的分片拿到数据再做Reduce,也是一个内存消耗点。所以很多人会专门搞出几台ES来做这个工作,其实就是ES的client模式,不存数据,只做接口响应。

在这里我们我们可以抽取出几个比较核心的概念:

  1. AggregatorFactory (生成对应的Aggregator)
  2. Aggregation (聚合的结果输出)
  3. Aggregator (聚合逻辑实现)

另外值得注意的,PipeLine Aggregator 我前面提到了,其实是对已经生成的Aggregations重新做加工,这个工作是只能单机完成的,会放在请求的接收端执行。

Aggregation Bucket的实现

前面的例子提到,在Query 阶段,其实就会调用Aggregator 的collect 方法,对所有符合查询条件的文档集都会计算一遍,这里我们涉及到几个对象:

  1. doc id
  2. field (docValue)
  3. IntArray 对象

collect 过程中会得到 doc id,然后拿着docId 到 docValue里去拿到field的值(一般而言字符串也会被编码成Int类型的),然后放到IntArray 进行计数。如果多个doc id 在某filed里的字段是相同的,则会递增计数。这样就实现了group by 的功能了。

Spark-SQL 和 ES 的组合

我之前一直在想这个问题,后面看了下es-hadoop的文档,发现自己有些思路和现在es-hadoop的实现不谋而合。主要有几点:

  1. Spark-SQL 的 where 语句全部(或者部分)下沉到 ES里进行执行,依赖于倒排索引,DocValues,以及分片,并行化执行,ES能够获得比Spark-SQL更优秀的响应时间
  2. 其他部分包括分片数据Merge(Reduce操作,Spark 可以获得更好的性能和分布式能力),更复杂的业务逻辑都交给Spark-SQL (此时数据规模已经小非常多了),并且可以做各种自定义扩展,通过udf等函数
  3. ES 无需实现Merge操作,可以减轻内存负担,提升并行Merge的效率(并且现阶段似乎ES的Reduce是只能在单个实例里完成)
</div>