Burpsuite中protobuf数据流的解析

jimdandy 9年前

来自: http://www.evil0x.com/posts/12830.html

Author:没羽@阿里移动安全

0x00 前言

对于protobuf over-HTTP的数据交互方式Burpsuite不能正确的解析其中的数据结构,需要Burpsuite扩展才能解析,笔者使用mwielgoszewski的burp-protobuf-decoder 【1】 扩展实践了protobuf数据流的解析,供有需要的同学学习交流。笔者实践使用的环境: burpsuite+python2.7+protobuf2.5.0。

0x01 安装burp-protobuf-decoder扩展

burp-protobuf-decoder 【1】 扩展是基于protobuf库(2.5.x版本)开发的burpsuite python扩展,可用于解析、篡改 request/response中protobuf数据流。从 https://github.com/mwielgoszewski/burp-protobuf-decoder 下载该扩展源码,然后解压。

该扩展是基于protobuf和jython实现的。先下载protobuf 2.5.0 【2】 源码进行编译,编译方法请参考其README.txt文件。需求在burpsuite的Extender中配置Jython 【3】 的路径:

Burpsuite中添加扩展:

  1. 在Burpsuite的Extender窗口中点击“Add”按钮,弹出的“Load Burp Extension”窗口中选择如下信息:

  2. 然后Next,当看到如下信息时表示扩展加载成功:

Tips:

  1. 加载扩展时提示 “Error calling protoc: Cannot run program "protoc" (in directory "******"): error=2, No such file or directory” 错误

    解决办法:修改protoburp.py中调用protoc命令的路径,有多处,如:

    将 process = subprocess.Popen(['protoc', '--version'] 中 'protoc' 改为 '/home/name/protobuf/src/protoc' 。

  2. 加载扩展碰到 cannot import name symbol_database 错误

    可能是你使用的protoc与扩展所使用protobuf python库版本不一致原因,一种解决办法是下载protobuf 2.5.0源码编译后,修改protoburp.py中对应的路径,再加载扩展。

  3. 扩展加载成功了,但不能解析protobuf数据流

    该扩展通过判断头部“content-type”是否为“ 'application/x-protobuf' ”来决定是否解析数据,你可以修改protoburp.py中的isEnabled()方法让其工作。

0x02 protobuf简介

protobuf是Google开源的一个跨平台的结构化数据存储格式。可用于通讯协议、数据存储等领域的语言无关、平台无关、可扩展的序列化结构数据格式。

protobuf通过定义“.proto”文件来描述数据的结构。.proto文件中用 “Message”来表示所需要序列化的数据的格式。Message由Field组成,Field类似Java或C++中成员变量,通常一个Field的定义包含修饰符、类型、名称和ID。下面看一个简单的.proto文件的例子:

syntax = "proto2";  package tutorial;  message Person {    required string name = 1;    required int32 id = 2;    optional string email = 3;      enum PhoneType {      MOBILE = 0;      HOME = 1;      WORK = 2;    }      message PhoneNumber {      required string number = 1;      optional PhoneType type = 2 [default = HOME];    }      repeated PhoneNumber phone = 4;  }  message AddressBook {    repeated Person person = 1;  }

使用下面的python代码生成二进制数据流:

import addressbook_pb2  address_book = addressbook_pb2.AddressBook()  person = address_book.person.add()  person.id = 9  person.name = 'Vincent'  person.email = 'Vincent@test.com'  phone = person.phone.add()  phone.number = '15011111111'  phone.type = 2  f = open('testAb', "wb")  f.write(address_book.SerializeToString())  f.close()

序列化后的二进制数据流如下:

有关Protobuf的语法网上已有很多文章了,你可以网上搜索或参考其官网 【4】 说明。

2.1Varint编码

Protobuf的二进制使用Varint编码。Varint 是一种紧凑的表示数字的方法。它用一个或多个字节来表示一个数字,值越小的数字使用越少的字节数。这能减少用来表示数字的字节数。

Varint 中的每个 byte 的最高位 bit 有特殊的含义,如果该位为 1,表示后续的 byte 也是该数字的一部分,如果该位为 0,则结束。其他的 7 个 bit 都用来表示数字。因此小于 128 的数字都可以用一个 byte 表示。大于 128 的数字,比如 300,会用两个字节来表示:1010 1100 0000 0010。

下图演示了protobuf如何解析两个 bytes。注意到最终计算前将两个 byte 的位置相互交换过一次,这是因为protobuf 字节序采用 little-endian 的方式。

(图片来自网络)

2.2数值类型

Protobuf经序列化后以二进制数据流形式存储,这个数据流是一系列key-Value对。Key用来标识具体的Field,在解包的时候,Protobuf根据 Key 就可以知道相应的 Value 应该对应于消息中的哪一个 Field。

Key 的定义如下:

(field_number << 3) | wire_type

Key由两部分组成。第一部分是 field_number,比如消息 tutorial .Person中 field name 的 field_number 为 1。第二部分为 wire_type。表示 Value 的传输类型。Wire Type 可能的类型如下表所示:

Type Meaning Used For
Varint int32, int64, uint32, uint64, sint32, sint64, bool, enum
1 64-bit fixed64, sfixed64, double
2 Length-delimi string, bytes, embedded messages, packed repeated fields
3 Start group Groups (deprecated)
4 End group Groups (deprecated)
5 32-bit fixed32, sfixed32, float

以数据流:08 96 01为例分析计算key-value的值:

08 = 0000 1000b      => 000 1000b(去掉最高位)      => field_num = 0001b(中间4位), type = 000(后3位)      => field_num = 1, type = 0(即Varint)  96 01 = 1001 0110 0000 0001b      => 001 0110 0000 0001b(去掉最高位)      => 1 001 0110b(因为是little-endian)      => 128+16+4+2=150

最后得到的结构化数据为:

1:150

其中1表示为 field_num ,150为value。

2.3手动反序列化

以上面例子中序列化后的二进制数据流进行反序列化分析:

0A = 0000 1010b => field_num=1, type=2;  2E = 0010 1110b => value=46;  0A = 0000 1010b => field_num=1, type=2;  07 = 0000 0111b => value=7;

读取7个字符“Vincent”;

10 = 0001 0000 => field_num=2, type=0;  09 = 0000 1001 => value=9;  1A = 0001 1010 => field_num=3, type=2;  10 = 0001 0000 => value=16;

读取10个字符“Vincent@test.com”;

22 = 0010 0010 => field_num=4, type=2;  0F = 0000 1111 => value=15;  0A = 0000 1010 => field_num=1, type=2;  0B = 0000 1011 => value=11;

读取11个字符“15011111111”;

10 = 0001 0000 => field_num=2, type=0;  02 = 0000 0010 => value=2;

最后得到的结构化数据为:

1 {    1: "Vincent"    2: 9    3: "Vincent@test.com"    4 {      1: "15011111111"      2: 2    }  }

2.4使用protoc反序列化

实现操作经常碰到较复杂、较长的流数据,手动分析确实麻烦,好在protoc加“ decode_raw ”参数可以解流数据,我实现了一个python脚本供使用:

def decode(data):      process = subprocess.Popen(['/usr/local/bin/protoc', '--decode_raw'],      stdin=subprocess.PIPE,stdout=subprocess.PIPE,stderr=subprocess.PIPE)        output = error = None      try:          output, error = process.communicate(data)      except OSError:          pass      finally:          if process.poll() != 0:              process.wait()      return output    f = open(sys.argv[1], "rb")  data = f.read()  print 'data:/n',decode(data)  f.close()

使用 python decode.py <proto.bin> 即可反序列化,其中proto.bin为protobuf二进制数据流文件。得到结构化的数据后我们可以逐步分析,猜测每个Field的名称,辅助协议、数据结构等逆向分析。

0x03 burpsuite+protobuf实战

用webpy模拟protobuf over-HTTP的web app。

服务端 overHttp_server.py 内容如下:

#!/usr/bin/env python  #coding: utf8  #author: Vincent  import web  import time  import os    urls = (      "/",  "default",      )  app = web.application(urls, globals())    class default:      def GET(self):          return 'hello world.'      def POST(self):          reqdata = web.data()            print 'client request:'+reqdata          resdata = reqdata.split(':')[-1]          web.header('Content-type', 'application/x-protobuf')          return resdata  if __name__ == "__main__":  app.run()

客户端 overHttp_client.py 内容如下:

#!/usr/bin/env python  #coding: utf8  #author: Vincent  import urllib  import urllib2  import json  import addressbook_pb2  import sys    proxy = 'http://<ip>:8888'  target = "http://<ip>:8080/"  enable_proxy = True    proxy_handler = urllib2.ProxyHandler({"http" : proxy})    null_proxy_handler = urllib2.ProxyHandler({})    if enable_proxy:        opener = urllib2.build_opener(proxy_handler)    else:        opener = urllib2.build_opener(null_proxy_handler)    urllib2.install_opener(opener)    def doPostReq():      url = target      address_book = addressbook_pb2.AddressBook()      f = open('testAb', "rb")      address_book.ParseFromString(f.read())      ad_serial = address_book.SerializeToString()      f.close()      data = ad_serial      opener = urllib2.build_opener(proxy_handler, urllib2.HTTPCookieProcessor())      req = urllib2.Request(url, data, headers={'Content-Type': 'application/x-protobuf'})      response = opener.open(req)      return response.read()    resp = doPostReq()  print 'response:',resp

3.1proto文件逆向分析

启动服务端: python overHttp_server.py <ip>:8080

客户端请求: python overHttp_client.py

此时burp中已解析出protobuf数据,如下图:

但是这个结构的可读性还是比较差,我们可以通过逆向分析逐步猜测字段名称、类型,然后再解析,方便实现协议的逆向、安全测试等。

对这个结构我们可以还原成以下proto文件:

syntax = "proto2";  package reversed.proto1;    message Msg {    optional string _name = 1;    optional int32 field2 = 2;    optional string _email = 3;      message subMsg1 {      required string _phone = 1;      optional int32 sub1_field2 = 2;    }      repeated subMsg1 field4 = 4;  }    message Root {    repeated Msg msg = 1;  }

然后使用右键的“Load .proto”加载该文件:

再看解析结果:

3.2数据篡改

打开request拦截:

运行 python overHttp_client.py 发送请求。拦截到request后,把 sub1_field2 改为999。

“Forward”后看request数据,已被篡改: