深度学习计算密集,所以你需要一个快速多核CPU,对吧?还是说买一个快速CPU可能是种浪费?搭建一个深度学习系统时,最糟糕的事情之一就是把钱浪费在并非必需的硬件上。本文中,我将一步步带你了解一个高性能经济系统所需的硬件。研究并行化深度学习过程中,我搭建了一个GPU集群,为此,我需要仔细挑选硬件。尽管经过了仔细的研究和逻辑推理,但是,挑选硬件时,我还是
在这篇博文中,我们假设你会利用GPU来进行深度学习。如果你正在构建或升级你的深度学习系统,忽视GPU是不理智的。GPU正是深度学习应用的核心要素——计算性能提升上,收获巨大,不可忽视。
我在以前的博客中详细谈到过GPU的选择,GPU的选择也许是深度学习系统中最关键的选择。作为目前市场上现有GPU的最佳选择:通常来说,如果你缺钱,我推荐到eBay上购买GTX 680,或者GTX Titan X(如果你很有钱,用来做卷积),或者GTX 980(非常有性价比,但对于大型卷积神经网络有点局限),另外如果你需要一个低成本的存储则可以选择GTX Titan。我之前支持过GTX 580,但是由于cnDNN库的新升级大幅增加了卷积的速度,所有不支持cuDNN的GPU都得淘汰了——GTX 580就是这样的一个GPU。如果你完全不使用卷积神经网络,那么GTX 580仍然是一个可靠的选择。