Netty那点事(2)Netty中的buffer

Alice2539 9年前

来自: http://www.importnew.com/17660.html

本系列:

Netty 那点事(1)概述

上一篇文章我们概要介绍了Netty的原理及结构,下面几篇文章我们开始对Netty的各个模块进行比较详细的分析。Netty的结构最底层是buffer机制,这部分也相对独立,我们就先从buffer讲起。

What: buffer二三事

buffer中文名又叫缓冲区,按照维基百科的解释,是”在数据传输时,在内存里开辟的一块临时保存数据的区域”。它其实是一种化同步为异步的机制,可以解决数据传输的速率不对等以及不稳定的问题。

根据这个定义,我们可以知道涉及I/O(特别是I/O写)的地方,基本会有buffer的存在。就Java来说,我们非常熟悉的Old I/O– InputStream & OutputStream 系列API,基本都是在内部使用到了buffer。Java课程老师就教过,必须调用 OutputStream.flush() ,才能保证数据写入生效!

而NIO中则直接将buffer这个概念封装成了对象,其中最常用的大概是ByteBuffer了。于是使用方式变为了:将数据写入Buffer,flip()一下,然后将数据读出来。于是,buffer的概念更加深入人心了!

Netty中的buffer也不例外。不同的是,Netty的buffer专为网络通讯而生,所以它又叫ChannelBuffer(好吧其实没有什么因果关系…)。我们下面就来讲讲Netty中的buffer。当然,关于Netty,我们必须讲讲它的所谓”Zero-Copy-Capable”机制。

When & Where: TCP/IP协议与buffer

TCP/IP协议是目前的主流网络协议。它是一个多层协议,最下层是物理层,最上层是应用层(HTTP协议等),而在Java开发中,一般只接触TCP以上,即传输层和应用层的内容。这也是Netty的主要应用场景。

TCP报文有个比较大的特点,就是它传输的时候,会先把应用层的数据项拆开成字节,然后按照自己的传输需要,选择合适数量的字节进行传输。什么叫”自己的传输需要”?首先TCP包有最大长度限制,那么太大的数据项肯定是要拆开的。其次因为TCP以及下层协议会附加一些协议头信息,如果数据项太小,那么可能报文大部分都是没有价值的头信息,这样传输是很不划算的。因此有了收集一定数量的小数据,并打包传输的Nagle算法(这个东东在HTTP协议里会很讨厌,Netty里可以用setOption(“tcpNoDelay”, true)关掉它)。

这么说可能太学院派了一点,我们举个例子吧:

发送时,我们这样分3次写入(‘|’表示两个buffer的分隔):

<code> +-----+-----+-----+ | ABC | DEF | GHI | +-----+-----+-----+ </code>

接收时,可能变成了这样:

<code> +----+-------+---+---+ | AB | CDEFG | H | I | +----+-------+---+---+ </code>

很好懂吧?可是,说了这么多,跟buffer有个什么关系呢?别急,我们来看下面一部分。

Why: buffer中的分层思想

我们先回到之前的 messageReceived 方法:

public void messageReceived(          ChannelHandlerContext ctx, MessageEvent e) {      // Send back the received message to the remote peer.      transferredBytes.addAndGet(((ChannelBuffer) e.getMessage()).readableBytes());      e.getChannel().write(e.getMessage());  }

这里 MessageEvent.getMessage() 默认的返回值是一个 ChannelBuffer 。我们知道,业务中需要的”Message”,其实是一条应用层级别的完整消息,而一般的buffer工作在传输层,与”Message”是不能对应上的。那么这个ChannelBuffer是什么呢?

来一个官方给的图,我想这个答案就很明显了:

这里可以看到,TCP层HTTP报文被分成了两个ChannelBuffer,这两个Buffer对我们上层的逻辑(HTTP处理)是没有意义的。但是两个ChannelBuffer被组合起来,就成为了一个有意义的HTTP报文,这个报文对应的ChannelBuffer,才是能称之为”Message”的东西。这里用到了一个词”Virtual Buffer”,也就是所谓的”Zero-Copy-Capable Byte Buffer”了。顿时觉得豁然开朗了有没有!

我这里总结一下, 如果说NIO的Buffer和Netty的ChannelBuffer最大的区别的话,就是前者仅仅是传输上的Buffer,而后者其实是传输Buffer和抽象后的逻辑Buffer的结合。 延伸开来说,NIO仅仅是一个网络传输框架,而Netty是一个网络应用框架,包括网络以及应用的分层结构。

当然,在Netty里,默认使用 ChannelBuffer 表示”Message”,不失为一个比较实用的方法,但是 MessageEvent.getMessage() 是可以存放一个POJO的,这样子抽象程度又高了一些,这个我们在以后讲到 ChannelPipeline 的时候会说到。

How: Netty中的ChannelBuffer及实现

好了,终于来到了代码实现部分。之所以啰嗦了这么多,因为我觉得,关于”Zero-Copy-Capable Rich Byte Buffer”,理解为什么需要它,比理解它是怎么实现的,可能要更重要一点。

我想可能很多朋友跟我一样,喜欢”顺藤摸瓜”式读代码–找到一个入口,然后顺着查看它的调用,直到理解清楚。很幸运, ChannelBuffers (注意有s!)就是这样一根”藤”,它是所有ChannelBuffer实现类的入口,它提供了很多静态的工具方法来创建不同的Buffer,靠“顺藤摸瓜”式读代码方式,大致能把各种ChannelBuffer的实现类摸个遍。先列一下ChannelBuffer相关类图。

此外还有 WrappedChannelBuffer 系列也是继承自 AbstractChannelBuffer ,图放到了后面。

ChannelBuffer中的readerIndex和writerIndex

开始以为Netty的ChannelBuffer是对NIO ByteBuffer的一个封装,其实不是的, 它是把ByteBuffer重新实现了一遍

以最常用的 HeapChannelBuffer 为例,其底层也是一个byte[],与ByteBuffer不同的是,它是可以同时进行读和写的,而不需要使用flip()进行读写切换。ChannelBuffer读写的核心代码在 AbstactChannelBuffer 里,这里通过readerIndex和writerIndex两个整数,分别指向当前读的位置和当前写的位置,并且,readerIndex总是小于writerIndex的。贴两段代码,让大家能看的更明白一点:

public void writeByte(int value) {      setByte(writerIndex ++, value);  }    public byte readByte() {      if (readerIndex == writerIndex) {          throw new IndexOutOfBoundsException("Readable byte limit exceeded: "                  + readerIndex);      }      return getByte(readerIndex ++);  }    public int writableBytes() {      return capacity() - writerIndex;  }    public int readableBytes() {      return writerIndex - readerIndex;  }

我倒是觉得这样的方式非常自然,比单指针与flip()要更加好理解一些。AbstactChannelBuffer还有两个相应的mark指针 markedReaderIndex 和 markedWriterIndex ,跟NIO的原理是一样的,这里不再赘述了。

字节序Endianness与HeapChannelBuffer

在创建Buffer时,我们注意到了这样一个方法: public static ChannelBuffer buffer(ByteOrder endianness, int capacity); ,其中 ByteOrder 是什么意思呢?

这里有个很基础的概念:字节序(ByteOrder/Endianness)。它规定了多余一个字节的数字(int啊long什么的),如何在内存中表示。BIG_ENDIAN(大端序)表示高位在前,整型数 12 会被存储为 0 0 0 12 四字节,而LITTLE_ENDIAN则正好相反。可能搞C/C++的程序员对这个会比较熟悉,而Javaer则比较陌生一点,因为Java已经把内存给管理好了。但是在网络编程方面,根据协议的不同,不同的字节序也可能会被用到。目前大部分协议还是采用大端序,可参考 RFC1700

了解了这些知识,我们也很容易就知道为什么会有 BigEndianHeapChannelBuffer 和 LittleEndianHeapChannelBuffer 了!

DynamicChannelBuffer

DynamicChannelBuffer是一个很方便的Buffer,之所以叫Dynamic是因为它的长度会根据内容的长度来扩充,你可以像使用ArrayList一样,无须关心其容量。实现自动扩容的核心在于 ensureWritableBytes 方法,算法很简单:在写入前做容量检查,容量不够时,新建一个容量x2的buffer,跟ArrayList的扩容是相同的。贴一段代码吧(为了代码易懂,这里我删掉了一些边界检查,只保留主逻辑):

public void writeByte(int value) {      ensureWritableBytes(1);      super.writeByte(value);  }    public void ensureWritableBytes(int minWritableBytes) {      if (minWritableBytes <= writableBytes()) {          return;      }        int newCapacity = capacity();      int minNewCapacity = writerIndex() + minWritableBytes;      while (newCapacity < minNewCapacity) {          newCapacity <<= 1;      }        ChannelBuffer newBuffer = factory().getBuffer(order(), newCapacity);      newBuffer.writeBytes(buffer, 0, writerIndex());      buffer = newBuffer;  }

CompositeChannelBuffer

CompositeChannelBuffer 是由多个ChannelBuffer组合而成的,可以看做一个整体进行读写。这里有一个技巧:CompositeChannelBuffer并不会开辟新的内存并直接复制所有ChannelBuffer内容,而是直接保存了所有ChannelBuffer的引用,并在子ChannelBuffer里进行读写,从而实现了”Zero-Copy-Capable”了。来段简略版的代码吧:

public class CompositeChannelBuffer{        //components保存所有内部ChannelBuffer      private ChannelBuffer[] components;      //indices记录在整个CompositeChannelBuffer中,每个components的起始位置      private int[] indices;      //缓存上一次读写的componentId      private int lastAccessedComponentId;        public byte getByte(int index) {          //通过indices中记录的位置索引到对应第几个子Buffer          int componentId = componentId(index);          return components[componentId].getByte(index - indices[componentId]);      }        public void setByte(int index, int value) {          int componentId = componentId(index);          components[componentId].setByte(index - indices[componentId], value);      }    }

查找componentId的算法再次不作介绍了,大家自己实现起来也不会太难。值得一提的是,基于ChannelBuffer连续读写的特性,使用了顺序查找(而不是二分查找),并且用 lastAccessedComponentId 来进行缓存。

ByteBufferBackedChannelBuffer

前面说ChannelBuffer是自己的实现的,其实只说对了一半。 ByteBufferBackedChannelBuffer 就是封装了NIO ByteBuffer的类,用于实现堆外内存的Buffer(使用NIO的 DirectByteBuffer )。当然,其实它也可以放其他的ByteBuffer的实现类。代码实现就不说了,也没啥可说的。

WrappedChannelBuffer

WrappedChannelBuffer 都是几个对已有ChannelBuffer进行包装,完成特定功能的类。代码不贴了,实现都比较简单,列一下功能吧。

类名 入口 功能
SlicedChannelBuffer ChannelBuffer.slice()ChannelBuffer.slice(int,int) 某个ChannelBuffer的一部分
TruncatedChannelBuffer ChannelBuffer.slice()ChannelBuffer.slice(int,int) 某个ChannelBuffer的一部分, 可以理解为其实位置为0的SlicedChannelBuffer
DuplicatedChannelBuffer ChannelBuffer.duplicate() 与某个ChannelBuffer使用同样的存储, 区别是有自己的index
ReadOnlyChannelBuffer ChannelBuffers.unmodifiableBuffer(ChannelBuffer) 只读,你懂的

可以看到,关于实现方面,Netty 3.7的buffer相关内容还是比较简单的,也没有太多费脑细胞的地方。

而Netty 4.0之后就不同了。4.0,ChannelBuffer改名ByteBuf,成了单独项目buffer,并且为了性能优化,加入了BufferPool之类的机制,已经变得比较复杂了(本质倒没怎么变)。性能优化是个很复杂的事情,研究源码时,建议先避开这些东西,除非你对算法情有独钟。举个例子,Netty4.0里为了优化,将Map换成了Java 8里6000行的 ConcurrentHashMapV8 ,你们感受一下…

下篇文章我们开始讲Channel。

参考资料:

Netty那点事系列文章索引