mahout基于用户推荐的简单例子(2)

jopen 9年前


首先是封装了一个给予用户的推荐,用的相似度算法还是皮尔逊相似度,其他的也可以封装。


package com.liuxinquan.utils;    import java.io.File;  import java.io.IOException;  import java.util.List;    import org.apache.mahout.cf.taste.common.TasteException;  import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;  import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;  import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;  import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;  import org.apache.mahout.cf.taste.model.DataModel;  import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;  import org.apache.mahout.cf.taste.recommender.RecommendedItem;  import org.apache.mahout.cf.taste.recommender.Recommender;  import org.apache.mahout.cf.taste.similarity.UserSimilarity;    public class UserPersonSim {   public static List<RecommendedItem> userRec(String filePath, int nearCnt, int userId, int recCnt) {    try {     DataModel model = new FileDataModel(new File(filePath));     UserSimilarity similarity = new PearsonCorrelationSimilarity(model);     UserNeighborhood neighborhood = new NearestNUserNeighborhood(nearCnt, similarity, model);     Recommender recommender = new GenericUserBasedRecommender(model, neighborhood, similarity);     List<RecommendedItem> recommendations = recommender.recommend(userId, recCnt);     return recommendations;    } catch (IOException e) {     // TODO Auto-generated catch block     e.printStackTrace();    } catch (TasteException e) {     // TODO Auto-generated catch block     e.printStackTrace();    }    return null;   }  }



4个参数:filePath---------要分析的数据文件.csv

nearcnt---------推荐给用户的最近的一组数据个数

userid------推荐用户id

reccnt-------推荐给用户的个数

具体使用:

package com.liuxinquan.recommmder;    import java.util.ArrayList;  import java.util.HashMap;  import java.util.List;  import java.util.Map;    import org.apache.mahout.cf.taste.recommender.RecommendedItem;    import com.liuxinquan.utils.UserPersonSim;    public class UserRecommder {     public static void main(String[] args) {    HashMap<String, String> map = new HashMap<>();    map.put("101", "橘子");    map.put("102", "苹果");    map.put("103", "香蕉");    map.put("104", "梨");    map.put("105", "西瓜");    map.put("106", "哈密瓜");    map.put("107", "葡萄");    String filePath = "xxx/intro.csv";    for (RecommendedItem item : UserPersonSim.userRec(filePath, 2, 1, 1)) {     System.out.println(map.get(item.getItemID() + ""));    }   }    }
结果:梨

和上一篇的104是对应的。这样更贴近实际应用,也给大家提供了一种思路。在实际中不可能都是数据格式的,更常见的是: 张三:梨。这就需要我们制定一种规则,先从现实中抽象出来物体的特征:比方一本书的作者、出版商、出版日期等,用数字把特征对应起来后在还原。



来自: http://my.oschina.net/liuxinquan/blog/596869