MapReduce业务 - 图片关联计算

jopen 9年前

 

1.概述

最近在和人交流时谈到数据相似度和数据共性问题,而刚好在业务层面有类似的需求,今天和大家分享这类问题的解决思路,分享目录如下所示:

  • 业务背景
  • 编码实践
  • 预览截图

下面开始今天的内容分享。

2.业务背景

目前有这样一个背景,在一大堆数据中,里面存放着图片的相关信息,如下图所示:

MapReduce业务 - 图片关联计算

上图只是给大家列举的一个示例数据格式,第一列表示自身图片,第二、第三......等列表示与第一列相关联的图片信息。那么我们从这堆数据中如何找出他们拥有相同图片信息的图片。

2.1 实现思路

那么,我们在明确了上述需求后,下面我们来分析它的实现思路。首先,我们通过上图所要实现的目标结果,其最终计算结果如下所示:

pic_001pic_002 pic_003,pic_004,pic_005  pic_001pic_003 pic_002,pic_005  pic_001pic_004 pic_002,pic_005  pic_001pic_005 pic_002,pic_003,pic_004  ......

结果如上所示,找出两两图片之间的共性图片,结果未列完整,只是列举了部分,具体结果大家可以参考截图预览的相关信息。

下面给大家介绍解决思路,通过观察数据,我们可以发现在上述数据当中,我们要计算图片两两的共性图片,可以从关联图片入手,在关联图片中我们可 以找到共性图片的关联信息,比如:我们要计算pic001pic002图片的共性图片,我们可以在关联图片中找到两者(pic001pic002组合)后 对应的自身图片(key),最后在将所有的key求并集即为两者的共性图片信息,具体信息如下图所示:

MapReduce业务 - 图片关联计算

通过上图,我们可以知道具体的实现思路,步骤如下所示:

  • 第一步:拆分数据,关联数据两两组合作为Key输出。
  • 第二步:将相同Key分组,然后求并集得到计算结果。

这里使用一个MR来完成此项工作,在明白了实现思路后,我们接下来去实现对应的编码。

3.编码实践

  • 拆分数据,两两组合。
public static class PictureMap extends Mapper<LongWritable, Text, Text, Text> {      @Override      protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context)        throws IOException, InterruptedException {    StringTokenizer strToken = new StringTokenizer(value.toString());    Text owner = new Text();    Set<String> set = new TreeSet<String>();    owner.set(strToken.nextToken());    while (strToken.hasMoreTokens()) {        set.add(strToken.nextToken());    }    String[] relations = new String[set.size()];    relations = set.toArray(relations);    for (int i = 0; i < relations.length; i++) {        for (int j = i + 1; j < relations.length; j++) {      String outPutKey = relations[i] + relations[j];      context.write(new Text(outPutKey), owner);        }    }      }  }

按Key分组,求并集
public static class PictureReduce extends Reducer<Text, Text, Text, Text> {    @Override    protected void reduce(Text key, Iterable<Text> values, Reducer<Text, Text, Text, Text>.Context context)        throws IOException, InterruptedException {      String common = "";      for (Text val : values) {        if (common == "") {          common = val.toString();        } else {          common = common + "," + val.toString();        }      }      context.write(key, new Text(common));    }  }

完整示例
package cn.hadoop.hdfs.example;  import java.io.IOException;  import java.util.Set;  import java.util.StringTokenizer;  import java.util.TreeSet;  import org.apache.hadoop.conf.Configuration;  import org.apache.hadoop.conf.Configured;  import org.apache.hadoop.fs.Path;  import org.apache.hadoop.io.LongWritable;  import org.apache.hadoop.io.Text;  import org.apache.hadoop.mapreduce.Job;  import org.apache.hadoop.mapreduce.Mapper;  import org.apache.hadoop.mapreduce.Reducer;  import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;  import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;  import org.apache.hadoop.util.Tool;  import org.apache.hadoop.util.ToolRunner;  import org.slf4j.Logger;  import org.slf4j.LoggerFactory;  import cn.hadoop.hdfs.util.HDFSUtils;  import cn.hadoop.hdfs.util.SystemConfig;  /**   * @Date Aug 31, 2015   *   * @Author dengjie   *   * @Note Find picture relations   */  public class PictureRelations extends Configured implements Tool {    private static Logger log = LoggerFactory.getLogger(PictureRelations.class);    private static Configuration conf;    static {      String tag = SystemConfig.getProperty("dev.tag");      String[] hosts = SystemConfig.getPropertyArray(tag + ".hdfs.host", ",");      conf = new Configuration();      conf.set("fs.defaultFS", "hdfs://cluster1");      conf.set("dfs.nameservices", "cluster1");      conf.set("dfs.ha.namenodes.cluster1", "nna,nns");      conf.set("dfs.namenode.rpc-address.cluster1.nna", hosts[0]);      conf.set("dfs.namenode.rpc-address.cluster1.nns", hosts[1]);      conf.set("dfs.client.failover.proxy.provider.cluster1",          "org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider");      conf.set("fs.hdfs.impl", org.apache.hadoop.hdfs.DistributedFileSystem.class.getName());      conf.set("fs.file.impl", org.apache.hadoop.fs.LocalFileSystem.class.getName());    }    public static class PictureMap extends Mapper<LongWritable, Text, Text, Text> {      @Override      protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, Text>.Context context)          throws IOException, InterruptedException {        StringTokenizer strToken = new StringTokenizer(value.toString());        Text owner = new Text();        Set<String> set = new TreeSet<String>();        owner.set(strToken.nextToken());        while (strToken.hasMoreTokens()) {          set.add(strToken.nextToken());        }        String[] relations = new String[set.size()];        relations = set.toArray(relations);        for (int i = 0; i < relations.length; i++) {          for (int j = i + 1; j < relations.length; j++) {            String outPutKey = relations[i] + relations[j];            context.write(new Text(outPutKey), owner);          }        }      }    }    public static class PictureReduce extends Reducer<Text, Text, Text, Text> {      @Override      protected void reduce(Text key, Iterable<Text> values, Reducer<Text, Text, Text, Text>.Context context)          throws IOException, InterruptedException {        String common = "";        for (Text val : values) {          if (common == "") {            common = val.toString();          } else {            common = common + "," + val.toString();          }        }        context.write(key, new Text(common));      }    }    public int run(String[] args) throws Exception {      final Job job = Job.getInstance(conf);      job.setJarByClass(PictureMap.class);      job.setMapperClass(PictureMap.class);      job.setMapOutputKeyClass(Text.class);      job.setMapOutputValueClass(Text.class);      job.setReducerClass(PictureReduce.class);      job.setOutputKeyClass(Text.class);      job.setOutputValueClass(Text.class);      FileInputFormat.setInputPaths(job, args[0]);      FileOutputFormat.setOutputPath(job, new Path(args[1]));      int status = job.waitForCompletion(true) ? 0 : 1;      return status;    }    public static void main(String[] args) {      try {        if (args.length != 1) {          log.warn("args length must be 1 and as date param");          return;        }        String tmpIn = SystemConfig.getProperty("hdfs.input.path.v2");        String tmpOut = SystemConfig.getProperty("hdfs.output.path.v2");        String inPath = String.format(tmpIn, "t_pic_20150801.log");        String outPath = String.format(tmpOut, "meta/" + args[0]);        // bak dfs file to old        HDFSUtils.bak(tmpOut, outPath, "meta/" + args[0] + "-old", conf);        args = new String[] { inPath, outPath };        int res = ToolRunner.run(new Configuration(), new PictureRelations(), args);        System.exit(res);      } catch (Exception ex) {        ex.printStackTrace();        log.error("Same friend task has error,msg is" + ex.getMessage());      }    }  }

4.截图预览

关于计算结果,如下图所示:

MapReduce业务 - 图片关联计算

5.总结

本篇博客只是从思路上实现了图片关联计算,在数据量大的情况下,是有待优化的,这里就不多做赘述了,后续有时间在为大家分析其中的细节。

6.结束语

这篇博客就和大家分享到这里,如果大家在研究学习的过程当中有什么问题,可以加群进行讨论或发送邮件给我,我会尽我所能为您解答,与君共勉!