使用容器技术来建立一个微服务架构

oprr 9年前

之前的博文中, 我讲解了Linux容器技术的相关实现,比如如何使用Docker来建立流线型的开发和测试体验。因为可以实现跨不同类型基础设施的兼容(比如,在AWS 上,容器也可以如实体服务器上一样轻松的运行),容器让代码的部署异常便捷。在实际工作中,测试和开发环境的细微不同很可能会导致应用程序的部署失败;因 此在这种情况下,对于开发和测试工作,容器技术可以让开发者豁免很多预想之外的工作和相互推脱。

在本篇文章中,我们将讨论是什么特性让容器 技术如此适应开发和测试工作,同样适用于在AWS平台上构建一个基于微服务的架构。对于Web应用程序来说,微服务架构可以让应用程序的代码库更加敏捷, 并且容易管理。下面,我们将介绍这个架构为何可以大幅提升开发者生产效率的原因,并了解它能够快速迭代和扩充一个代码库的原理。对于快速发展中的创业公司 来说,微服务架构可以让开发团队在研发过程中更加的敏捷和灵活。

Web开发简史

首先,我们先简洁地回顾下20年内基于Web开发的历史,它可以让我们知悉微服务架构为什么可以在Web开发领域如此的盛行,同时也顺便了解这个架构可以解决的问题。

在 Web应用程序开发的早期,应用程序通常使用Common Gateway Interface(CGI)建立,这个接口为网络服务器提供了处理浏览器发来的HTTP请求时执行脚本(通常情况下用Perl编写)的能力。CGI的扩 展性非常很好,因为它需要为每个输入请求都建立一个Perl进程。为了解决这个问题,那个时代的网络服务器通常都会添加模块化的支持。Apache,现下 最为流行的网络服务器之一,增加了“mod_perl”让Perl代码可以在内部运行,这样一来,CGI脚本就可以在更少的时间内执行。

即 使对比传统的CGI类似mod_perl这些技术有了很大的提升,但仍然存在问题。也就是说,负责视图层(比如,在HTML页面上执行一个动态模块)的代 码通常会被混入应用程序逻辑代码中。这就意味着,完成一个简单的任务,比如在HTML列表中增加一列,或者在form中增加一个元素,通常需要修改一个低 等级的应用程序代码。因此,Web程序开发技术下一个阶段中衍生了“server pages”,它允许在HTML嵌入执行代码。这样一来,应用程序逻辑代码与视图代码被很好的分离。在Java开发领域,一个被称为“Model 2”的设计模式得以快速演变,在这里,应用程序代码放到Java servlets中,数据则通过Java Beans进行,视图层逻辑则使用了Java server pages,详见下图:

使用容器技术来建立一个微服务架构

图1:Model 2设计模型

随 后,在Java领域,“Model 2”模式在很短的时间就演化成了“Model-View-Controller(MVC)”框架,比如Apache Struts。而在其他领域,Ruby on Rails则非常盛行。在MVC模式中,控制器类会定义方法,通过“route”类映射成URL模式被调用。 控制器方法会利用“model”类封核心应用程序实体的业务逻辑和数据。最后,每个控制方法都会渲染一个“view”用于显示,并修改相应模式类的方法。 在这种模式下,业务、应用程序、视图逻辑被很好的分离,如图2:

使用容器技术来建立一个微服务架构

图2:MVC设计模型

REST协议的盛行

就 在MVC被广泛接受并成为网络开发途径的同时,进程间通信(IPC)也开始利用上了基于文本的序列化格式,比如XML和JSON。而在类似SOAP这些协 议实现跨HTTP IPC的不久后,网络开发已不再限制于给浏览器建立交付内容的应用程序,为其他程序执行操作和交付数据的网络服务也逐渐走上历史的舞台。这种基于服务的架 构拥有非常强大的功能,因为它消除了代码库共享的依赖性,从而开发者可以更进一步的解耦应用程序组件。而SOAP协议和相关的WS-*标准也变得越来越复 杂,并更加依赖于应用程序服务器的实现,至此开发者开始投身更为轻量级的REST协议。同时,随着移动设备的剧增,Web UX development逐渐走向AJAX和JavaScript框架,应用程序开发者开始广泛使用REST在客户端设备和网络服务器之间做数据传输。

后来人们发现,MVC框架同样非常适合开发REST端点。REST面向资源的特性被很好的映射成了控制器和模型理念,如图3所示:

使用容器技术来建立一个微服务架构

图3:MVC的REST端点

Monolithic架构

因 此,曾今由模型、视图层、控制器组成,主要用于给应用程序交付HTML内容的MVC应用程序发生了本质上的变化——它们不仅可以支撑传统的HTML,也可 以通过REST端点来支撑JSON。应用程序被部署为一个单一的文件(比如Java)或者同一个目录下的文件合集(比如Rails)。然而不容忽视的是, 所有应用程序代码都运行在相同的进程中。因此在缩放过程中,开发者需要将应用程序代码的多个副本部署到多个所需的服务器上。下图解析了 Monolithic架构:

使用容器技术来建立一个微服务架构

图片4:Monolithic架构

在 Monolithic架构中存在着很多的问题。首先,随着应用程序的功能和服务越来越多,代码将变得越来越复杂。对于新的开发者来说,这一点非常头疼。新 型集成开发环境在加载、编译整个应用程序代码时也可能存在问题,同时这个过程的耗时也可能非常长。此外,因为所有程序代码都运行在服务器上的相同进程中, 导致应用程序某个组成的扩展也非常难。如果某个服务是内存密集型的,而另一个是CPU密集型的,那么服务器必须有足够的内存和CPU来满足每个服务的需 求。因此,鉴于每个服务器都使用非常高的CPU和内存,基础设施的整体花费可能会非常高,特别是在纵向扩展策略下。最后非常微妙的是,应用程序的组成通常 也会映射到研发团队的结构上。UX工程师负责UI组件的建立,中间层开发者通常负责建立服务器端点,而数据库工程师和DBA们则负责数据访问组件和数据 库。如果某个UX工程师期望给增加一些显示,他往往需要来自中间层和数据库工程师的配合。就像水一样,人们通常期望以最少的阻力执行,每个工程师也都期望 为其负责的应用程序嵌入尽可能多的逻辑。鉴于这些问题,随着时间的推移,代码将越来越难以管理。

微服务架构

微服务架构的发明就是用来解决这些问题。定义在Monolithic架构应用程序中的服务将拆分成独立的服务,它们在不同的主机上进行独立的部署。

使用容器技术来建立一个微服务架构

图片5:微服务架构

每 个微服务都对应了一个独立的业务功能,也只定义了该功必须的一些操作。这听起来比较类似面向服务架构(SOA),事实上,微服务架构和面向服务的架构确实 有很多共同的特性。两个架构都使用服务的模式组织代码,两种架构在不同的服务间都建立了非常明确的边界。然而,面向服务的架构起源于Monolithic 应用程序交互的需求,通常彼此都会提供一个API(基于SOAP)。在面向服务架构中,集成重度依赖于中间件,特别在企业服务总线(EBS)中。微服务架 构通常会利用一个消息总线,但是无论任何情况在消息层都不会存在逻辑——它纯粹的被用于服务之间的交互。这与ESB有着非常显著的差别,ESB包含了大量 逻辑——用于消息路由、模式验证、消息翻译和业务规则。因此,对比传统的面向服务架构,微服务架构往往更为简单,不会包含用于定义服务间接口的同级别控制 和规范化数据建模。通过使用微服务,开发将非常快速,服务的衍变也只需匹配业务的需求。

微服务架构的另一个核心优势就是服务可以基于资源的 需求进行独立扩展。取代运行包含大量CPU和内存的大服务器,微服务可以被部署在更小的主机上,这些主机只需要满足其部署服务的需求。同时,开发者可以根 据业务的需求选择开发语言,比如:一个图像处理服务可以使用类似C++这样的高性能语言实现,一个执行数学或者静态操作的服务可以使用Python实现, 对资源进行增删查改的基础操作则往往通过Ruby进行。在微服务中,开发者并不需要考虑Monolithic架构中使用的“一刀切”模型——比如只使用 MVC框架和单一的编程语言。

然而,不容忽视的是,微服务同样存在一些劣势。因为服务通常部署在多个主机上,很难持续跟踪指定服务究竟运行 在某台主机上。同时,因为微服务架构使用的主机容量往往小于Monolithic架构,随着微服务架构不停的横向扩展,主机数量将以一个非常恐怖的速度增 长。在AWS环境中,微服务架构中独立服务需要的资源往往会小于最小的EC2实例类型。从而造成了超量配置并浪费开销。此外,如果服务使用不同的编程语言 将开发,这就意味着每个服务的部署都需要完全不同的库和框架,从而服务的部署非常复杂。


容器的用武之地

Linux 容器技术的使用可以很大程度上缓解微服务架构所带来的问题。Linux容器技术使用了类似cnames和namespaces这样的内核接口,它允许不同 容器共享相同的内核,同时容器之间还进行了完全的隔离。Docker执行环境使用了一个被称为libcontainer的模块,它标准化了这些接口。 Docker同样为容器镜像提供了一个类GitHub的资源库DockerHub,让容器的共享和发布非常简单,也正是这种相同主机上的容器隔离简易了不 同语言开发的微服务代码部署。使用Docker,我们可以创建一个DockerFile来描述所有用到的语言、框架和服务间库的依赖性。举个例子,下面代 码中的DockerFile可以用来定义一个微服务的Docker镜像,它使用了Ruby和Sinatra框架:

FROM ubuntu:14.04  MAINTAINER John Doe <jdoe@example.com>  RUN apt-get update && apt-get install -y curl wget default-jre git  RUN adduser --home /home/sinatra --disabled-password --gecos ''   sinatra  RUN adduser sinatra sudo  RUN echo '%sudo ALL=(ALL) NOPASSWD:ALL' >> /etc/sudoers  USER sinatra  RUN curl -sSL https://get.rvm.io | bash -s stable  RUN /bin/bash -l -c "source /home/sinatra/.rvm/scripts/rvm"  RUN /bin/bash -l -c "rvm install 2.1.2"  RUN /bin/bash -l -c "gem install sinatra"  RUN /bin/bash -l -c "gem install thin"

使用这个镜像建立的容器可以便捷地被部署到一个主机上,这个主机同时还运行了另一个使用Java和DropWizard 定义的Docker镜像所建立的容器。容器执行缓解隔离了主机上运行的不同容器,因此不存在使用不同语言、库和框架容器所造成的冲突问题。

同 时值得高兴的是,近期发布的Amazon EC2 Container Service(Amazon ECS)可以帮你搞定所有这些工作。使用Amazon ECS,你可以定义一个被称为“cluster”的计算资源池,一个cluster由一个或以上的EC2实例组成。Amazon ECS负责管理集群中所有基于容器的应用程序,提供 telemetry和logging,并管理集群的容量优化,进行高效的任务调度。Amazon ECS提供了一个“任务内容(task definition)”的理念,它可以定义组成一个应用程序的一组容器。task definition中的每个容器都指定了该容器所需的资源,而Amazon ECS将基于集群中的可用资源来调度这个任务的执行。

微服务 可以非常便捷地被定义为一个任务,它可以由两个容器组成——一个负责运行服务终端代码,另一个负责运行数据库。Amazon ECS可以管理这些容器之间的依赖性,同时也可以跨集群进行资源平衡。同时,Amazon ECS还可以无缝的访问多个AWS重点服务,比如Elastic Load Balancing、Amazon EBS、Elastic Network Interface和Auto Scaling。通过Amazon ECS,使用 Amazon EC2部署应用程序的所有基本特征都对基于容器的应用程序可用。

此外,类似Amazon ECS 这样的容器解决方案还可以简化“service discovery(服务搜寻)”这样的实现。因为微服务往往会跨多个主机部署,并根据负载进行缩放,service discovery更有利于服务之间的定位。在最简单的情况下,可以使用负载均衡器来进行,但是在更为复杂的环境中,一个真正的分布式配置服务非常有必 要,比如Apache Zookeeper。使用Amazon ECS API,与类似Zookeeper这样的第三方工具整合将非常容易。配置了Zookeeper的容器可以被添加到一个task definition中,并可以通过Amazon ECS在集群中的Amazon EC2调度执行。

从许多方面来看,使用容器技术实施微服 务架构转变都与过去20年Web开发的衍变非常类似。许多这些衍变都是为了更好的利用计算资源,以及更方便的维护越来越复杂的Web应用程序。如我们所 见,使用Linux容器技术来实现微服务架构完全匹配了这两个需求。在本文中,我们简单地接触了使用Amazon ECS来定义一个微服务架构,但是容器在分布式系统中的使用已经远超过了微服务。在分布式系统中,越来越多的容器成为了first class citizens,而在未来的报告中,我将讨论为什么 Amazon ECS对管理给予容器的计算是至关重要的。

相关文章:一个更好的开发/测试体验:在AWS上运行Docker

原文链接:https://medium.com/aws-activate-startup-blog/using-containers-to-build-a-microservices-architecture-6e1b8bacb7d1