Sphinx+Mysql+Php 12亿DNS数据秒查

jopen 10年前

    最近得到一个接近12亿的全球ns节点的数据,本来想用来做一个全国通过dns反查域名然后进行全国范围的网站收集和扫描的,后来发现网站的数量不是很准确,加上一个人的精力和财力实在难以完成这样一个庞大的任务,就没有做下去,只留下了这个搭建的笔记。
    文本格式,简单的文本搜索,速度太慢,一次搜索接近花掉5-10分钟时间,决定将其倒入数据库进行一次优化,速度应该能提升不到,电脑上只有AMP的环境,那么就决定将其倒入到mysql中,
一开始使用Navicat进行倒入,刚好数据的格式是 ip,ns 这样的格式,倒入了接近5个小时发现还没有倒入到百分之一,这可是纯文本格式化的时候大小为54G的数据文件啊!
    后来发现用mysql自带的load data local infile只话了30分钟左右,第一次导入的时候忘记新建键了,只好重新导入一次

mysql> load data local infile 'E:\\dns\\rite\\20141217-rdns.txt' into table dns  fields terminated by ',';  Query OK, 1194674130 rows affected, 1700 warnings (29 min 26.65 sec)  Records: 1194674130  Deleted: 0  Skipped: 0  Warnings: 1700

    因为添加了一个id字段,所以导入速度明显下降,不过大概也只花了1个半小时左右的时间就完成了55G数据的导入。
    接着是建立索引,因为我需要的模糊查询,所以在这里建立的是Full Text+Btree,差不多花了3天时间索引才建立完成,期间因为一不小心把mysql的执行窗口关闭了,以为就这么完蛋了,最后发现其实mysql还在后台默默的建立索引。
    建立了索引之后发现查询速度也就比没有建立索引快那么一点,执行了一条

select * from ns where ns like '%weibo.com'

    花掉了210秒的时间,还是太慢了。
    然后就开始使用SPhinx来做索引提升速度,
    从官方下载了64位的SPHINX MYSQL SUPPORT的包下载地址
    接着配置配置文件,src里配置要mysql的账号密码

source src1  {      sql_host        = localhost      sql_user        = root      sql_pass        = root      sql_db          = ns      sql_port        = 3306        sql_query       = \          SELECT id,ip,ns from ns //这里写上查询语句      sql_attr_uint       = id

然后searchd里也需要配置一下,端口和日志,pid文件的路径配置好即可

searchd  {      listen          = 9312      listen          = 9306:mysql41      log         = E:/phpStudy/splinx/file/log.log      query_log       = E:/phpStudy/splinx/file/query.log      pid_file        = E:/phpStudy/splinx/file/searchd.pid

然后切换到sphinx的bin目录进行建立索引,执行

searchd test1 #test1是你source的名称

我大概建立了不到2个小时的时间就建立完成了,
然后切换到api目录下执行

E:\phpStudy\splinx\api>test.py asd  DEPRECATED: Do not call this method or, even better, use SphinxQL instead of an  API  Query 'asd ' retrieved 1000 of 209273 matches in 0.007 sec  Query stats:          'asd' found 209291 times in 209273 documents  Matches:  1. doc_id=20830, weight=1  2. doc_id=63547, weight=1  3. doc_id=96147, weight=1  4. doc_id=1717000, weight=1  5. doc_id=2213385, weight=1  6. doc_id=3916825, weight=1  7. doc_id=3981791, weight=1  8. doc_id=5489598, weight=1  9. doc_id=9348383, weight=1  10. doc_id=18194414, weight=1  11. doc_id=18194415, weight=1  12. doc_id=18195126, weight=1  13. doc_id=18195517, weight=1  14. doc_id=18195518, weight=1  15. doc_id=18195519, weight=1  16. doc_id=18195520, weight=1  17. doc_id=18195781, weight=1  18. doc_id=18195782, weight=1  19. doc_id=18200301, weight=1  20. doc_id=18200303, weight=1

进行了测试,发现速度真的很快,写了一个PHP脚本进行调用

<?php  include 'sphinxapi.php';  $conn=mysql_connect('127.0.0.1','root','root');  mysql_select_db('ns',$conn);  $sphinx = new SphinxClient();  $now=time();  $sphinx->SetServer ( '127.0.0.1', 9312 );  $result = $sphinx->query ('weibo.com', 'test1');   foreach($result['matches'] as $key => $val){      $sql="select * from ns where id='{$key}'";      $res=mysql_query($sql);      $res=mysql_fetch_array($res);      echo "{$res['ip']}:{$res['ns']}";    }  echo time()-$now;  ?>

基本实现了秒查!,最后输出的时间只花掉了0!

123.125.104.176:w-176.service.weibo.com  123.125.104.178:w-178.service.weibo.com  123.125.104.179:w-179.service.weibo.com  123.125.104.207:w-207.service.weibo.com  123.125.104.208:w-208.service.weibo.com  123.125.104.209:w-209.service.weibo.com  123.125.104.210:w-210.service.weibo.com  202.106.169.235:staff.weibo.com  210.242.10.56:weibo.com.tw  218.30.114.174:w114-174.service.weibo.com  219.142.118.228:staff.weibo.com  60.28.2.221:w-221.hao.weibo.com  60.28.2.222:w-222.hao.weibo.com  60.28.2.250:w-222.hao.weibo.com  61.135.152.194:sina152-194.staff.weibo.com  61.135.152.212:sina152-212.staff.weibo.com  65.111.180.3:pr1.cn-weibo.com  160.34.0.155:srm-weibo.us2.cloud.oracle.com  202.126.57.40:w1.weibo.vip.hk3.tvb.com  202.126.57.41:w1.weibo.hk3.tvb.com  0
来自:http://my.oschina.net/rookier/blog/406140