运动轨迹时间分析库:Tsfeat

jopen 10年前

Tsfeat 是一个能够按照时间顺序分析运动轨迹工具。通常可以运用在气象数据中心的风速分析,股市中的股价的变化等领域。

示例代码:

#We open the ligth curve in two different bands  lc_B = FATS.ReadLC_MACHO('lc_1.3444.614.B.mjd')  #58.6272.729 1.3444.614 1.4652.1527    lc_R = FATS.ReadLC_MACHO('lc_1.3444.614.R.mjd')  #We import the data  [mag, time, error] = lc_B.ReadLC()  [mag2, time2, error2] = lc_R.ReadLC()  #We preprocess the data  preproccesed_data = FATS.Preprocess_LC(mag, time, error)  [mag, time, error] = preproccesed_data.Preprocess()  preproccesed_data = FATS.Preprocess_LC(mag2, time2, error2)  [mag2, time2, error2] = preproccesed_data.Preprocess()  #We synchronize the data  if len(mag) != len(mag2):      [aligned_mag, aligned_mag2, aligned_time] = FATS.Align_LC(time, time2, mag, mag2, error, error2)  else:      aligned_mag = mag      aligned_mag2 = mag2      aligned_time = time         lc = np.array([mag,time,error,mag2,aligned_mag, aligned_mag2, aligned_time])

运动轨迹时间分析库:Tsfeat 运动轨迹时间分析库:Tsfeat

项目主页:http://www.open-open.com/lib/view/home/1427986904100