Spark 伪分布式 & 全分布式 安装指南

jopen 10年前

0、前言

3月31日是 Spark 五周年纪念日,从第一个公开发布的版本开始,Spark走过了不平凡的5年:从刚开始的默默无闻,到13年的鹊起,14年的大爆发。Spark核心之上有分布式的机器学习,SQL,streaming和图计算库。

4月1日 spark 官方正式宣布 Spark 2.0 对Spark重构,更好支持手机等移动终端。Databricks创始人之一hashjoin透漏了相关的重构方法:利用Scala.js项目把Spark代码编译成JavaScript,然后利用Safari / Chrome在手机上执行。一个代码可以支持Android / iOS。但是考虑到性能关系,可能需要重写底层的网络模块来支持zero-copy。(确定是否愚人节玩笑呢 :)  )

Spark 伪分布式 & 全分布式 安装指南

ok,言归正传。Spark目前支持多种分布式部署方式:一、Standalone Deploy Mode;二、Amazon EC2 ;三、Apache Mesos;四、Hadoop YARN。第一种方式是单机部署,不需要有依赖的资源管理器,其它三种都需要将spark部署到对应的资源管理器上。

除了部署的多种方式之外,较新版本的Spark支持多种hadoop平台,比如从0.8.1版本开始分别支持Hadoop 1 (HDP1, CDH3)、CDH4、Hadoop 2 (HDP2, CDH5)。目前Cloudera公司的CDH5在用CM安装时,可直接选择Spark服务进行安装。

目前Spark最新版本是1.3.0,本文就以1.3.0版本,来看看如何实现Spark 单机伪分布式以及分布式集群的安装。

1、安装环境

Spark 1.3.0需要JDK1.6或更高版本,我们这里采用jdk 1.6.0_32;
Spark 1.3.0需要Scala 2.10或更高版本,我们这里采用scala 2.11.6;

记得配置下 scala 环境变量:

vim /etc/profile  export SCALA_HOME=/home/hadoop/software/scala-2.11.4  export PATH=$SCALA_HOME/bin:$PATH

2、伪分布式安装

2.1 解压缩、配置环境变量即可

直接编辑 /etc/profile 或者 ~/.bashrc 文件,然后加入如下环境变量:

export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop    export SCALA_HOME=/home/hadoop/software/scala-2.11.4  export JAVA_HOME=/home/hadoop/software/jdk1.7.0_67  export SPARK_MASTER=localhost  export SPARK_LOCAL_IP=localhost  export HADOOP_HOME=/home/hadoop/software/hadoop-2.5.2  export SPARK_HOME=/home/hadoop/software/spark-1.2.0-bin-hadoop2.4  export SPARK_LIBARY_PATH=.:$JAVA_HOME/lib:$JAVA_HOME/jre/lib:$HADOOP_HOME/lib/native  export YARN_CONF_DIR=$HADOOP_HOME/etc/hadoop  export PATH=$PATH:$SCALA_HOME/bin:$SPARK_HOME/bin

2.2 让配置生效

source /etc/profile</span>

source ~/.bashrc

2.3 启动spark

进入到SPARK_HOME/sbin下,运行:
start-all.sh
[root@centos local]# jps
7953 DataNode
8354 NodeManager
8248 ResourceManager
8104 SecondaryNameNode
10396 Jps
7836 NameNode
7613 Worker
7485 Master
有一个Master跟Worker进程 说明启动成功
可以通过http://localhost:8080/查看spark集群状况
</span>

2.4 两种模式运行Spark例子程序

2.4.1 Spark-shell

此模式用于interactive programming,具体使用方法如下(先进入bin文件夹)
./spark-shell  ...   scala> val days = List("Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday")  days: List[String] = List(Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday)     scala> val daysRDD =sc.parallelize(days)  daysRDD: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[0] at parallelize at <console>:14     scala>daysRDD.count()  scala>res0:Long =7
</span>

2.4.2 运行脚本

运行Spark自带的example中的SparkPi,在
这里要注意,以下两种写法都有问题
./bin/run-example org.apache.spark.examples.SparkPi spark://localhost:7077
./bin/run-example org.apache.spark.examples.SparkPi local[3]
local表示本地,[3]表示3个线程跑
这样就可以:

./bin/run-example org.apache.spark.examples.SparkPi 2 spark://192.168.0.120:7077     15/03/17 19:23:56 INFO scheduler.DAGScheduler: Completed ResultTask(0, 0)  15/03/17 19:23:56 INFO scheduler.DAGScheduler: Stage 0 (reduce at SparkPi.scala:35) finished in 0.416 s  15/03/17 19:23:56 INFO spark.SparkContext: Job finished: reduce at SparkPi.scala:35, took 0.501835986 s  Pi is roughly 3.14086

3、全分布式集群安装

其实集群安装方式也很简单。</span>

3.1 添加环境变量

cd spark-1.3.0  cp ./conf/spark-env.sh.template ./conf/spark-env.sh  vi ./conf/spark-env.sh 添加以下内容:  export SCALA_HOME=/usr/lib/scala-2.10.3  export JAVA_HOME=/usr/java/jdk1.6.0_31  export SPARK_MASTER_IP=10.32.21.165  export SPARK_WORKER_INSTANCES=3  export SPARK_MASTER_PORT=8070  export SPARK_MASTER_WEBUI_PORT=8090  export SPARK_WORKER_PORT=8092  export SPARK_WORKER_MEMORY=5000m
SPARK_MASTER_IP这个指的是master的IP地址;SPARK_MASTER_PORT这个是master端口;SPARK_MASTER_WEBUI_PORT这个是查看集群运行情况的WEB UI的端口号;SPARK_WORKER_PORT这是各个worker的端口号;SPARK_WORKER_MEMORY这个配置每个worker的运行内存。
  • vi ./conf/ slaves  每行一个worker的主机名,内容如下:
      10.32.21.165
10.32.21.166
10.32.21.167
  • 设置 SPARK_HOME 环境变量,并将 SPARK_HOME/bin 加入 PATH:
       vi /etc/profile ,添加内容如下:
       export SPARK_HOME=/usr/lib/spark-1.3.0
       export PATH=$SPARK_HOME/bin:$PATH
然后将配置以及安装文件同步到各节点上,并让环境变量生效。

3.2 启动spark集群

      执行   ./sbin/start-all.sh    
如果start-all方式无法正常启动相关的进程,可以在$SPARK_HOME/logs目录下查看相关的错误信息。其实,你还可以像Hadoop一样单独启动相关的进程,在master节点上运行下面的命令:
在Master上执行:./sbin/start-master.sh
在Worker上执行:./sbin/start-slave.sh 3 spark://10.32.21.165:8070 --webui-port 8090
然后检查进程是否启动,执行jps命令,可以看到Worker进程或者Master进程。然后可以在WEB UI上查看http://masterSpark:8090/可以看到所有的work 节点,以及他们的 CPU 个数和内存等信息。

3.3 Local模式运行demo

比如:./bin/run-example SparkLR 2 local   或者  ./bin/run-example SparkPi 2 local
这两个例子前者是计算线性回归,迭代计算;后者是计算圆周率
</span>

3.4 shell 交互式模式

./bin/spark-shell --master spark://10.32.21.165:8070 , 如果在conf/spark-env.sh中配置了MASTER(加上一句export MASTER=spark://${SPARK_MASTER_IP}:${SPARK_MASTER_PORT}),就可以直接用  ./bin/spark-shell启动了。
spark-shell作为应用程序,是将提交作业给spark集群,然后spark集群分配到具体的worker来处理,worker在处理作业的时候会读取本地文件。
这个shell是修改了的scala shell,打开一个这样的shell会在WEB UI中可以看到一个正在运行的Application
Spark 伪分布式 & 全分布式 安装指南

4、一个 scala & spark 例子

这个例子首先用 shell 生成 150,000,000 个随机数,然后用 spark 统计每个随机数频率,以观察随机数是否均匀分布。

getNum(){      c=1      while [[ $c -le 5000000 ]]      do          echo $(($RANDOM/500))          ((c++))      done  }  for i in `seq 30`  do      getNum > ${i}.txt &  done  wait  echo "--------------- DONE -------------------"  cat [0-9]*.txt > num.txt
val file = sc.textFile("hdfs://10.9.17.100:8020/tmp/lj/num.txt")  val count = file.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey(_+_)  //count.collect().sortBy(_._2)   //count.sortBy(-_._2).saveAsTextFile("hdfs://10.9.17.100:8020/tmp/lj/spark/numCount")  count.sortBy(_._2).map(x => x._1 + "\t" + x._2).saveAsTextFile("hdfs://10.9.17.100:8020/tmp/lj/spark/numCount")

hadoop fs -cat hdfs://10.9.17.100:8020/tmp/lj/spark/numCount/p*|sort -k2n        65      1228200  55      2285778  59      2285906  7       2286190  24      2286344  60      2286554  37      2286573  22      2286719  ...  13      2291903  43      2292001

5、题外话:拥抱 Scala

scala 如下几个特性,或许值得你去学习这门新语言: 

  • 它最终也会编译成Java VM代码,看起来象不象Java的壳程序?- 至少做为一个Java开发人员,你会松一口气 
  • 它可以使用Java包和类 - 又放心了一点儿,这样不用担心你写的包又得用另外一种语言重写一遍 
  • 更简洁的语法和更快的开发效率 - 比起java臃肿不堪的指令式语言,scala 函数式风格会让你眼前一亮
  • spark 在 scala shell 基础之上提供交互式 shell 环境让 spark 调试方便,比起笨重的 Java MR,一念天堂一念地狱。

6、Refer:

[1] 在Hadoop2.2基础上安装Spark(伪分布式)

http://www.cnblogs.com/kxdblog/p/4345356.html

[2] Spark一:Spark伪分布式安装

http://bit1129.iteye.com/blog/2171761

[3] Spark-1.0.0 standalone分布式安装教程

http://www.cnblogs.com/lxf20061900/p/3819499.html

[4] namenode元数据管理进程端口号获取:
http://10.9.17.100:50070/dfshealth.html#tab-overview
http://blog.cloudera.com/blog/2009/08/hadoop-default-ports-quick-reference/
http://docs.hortonworks.com/HDPDocuments/HDP1/HDP-1.3.7/bk_using_Ambari_book/content/reference_chap2_2x.html

来自:http://my.oschina.net/leejun2005/blog/394928