用MeCab打造一套实用的中文分词系统

jopen 10年前

MeCab是一套日文分词(形态分析)和词性标注系统(Yet Another Part-of-Speech and Morphological Analyzer), rick曾经在这里分享过MeCab的官方文档中文翻译: 日文分词器 Mecab 文档,这款日文分词器基于条件随机场打造,有着诸多优点,譬如代码基于C++实现,基本内嵌CRF++代码,词典检索的算法和数据结构均使用双数组Double-Array,性能优良,并通过SWIG提供多种语言调用接口,可扩展性和通用性都非常不错:

mecab (http://mecab.sourceforge.net/) 是奈良先端科学技術大学院的工藤拓开发的日文分词系统, 该作者写过多个 machine learning 方面的软件包, 最有名的就是 CRF++, 目前该作者在 google@Japan 工作。

mecab 是基于CRF 的一个日文分词系统,代码使用 c++ 实现, 基本上内嵌了 CRF++ 的代码, 同时提供了多种脚本语言调用的接口(python, perl, ruby 等).整个系统的架构采用通用泛化的设计,用户可以通过配置文件定制CRF训练中需要使用的特征模板。 甚至, 如果你有中文的分词语料作为训练语料,可以在该架构下按照其配置文件的规范定制一个中文的分词系统。

日文NLP 界有几个有名的开源分词系统, Juman, Chasen, Mecab. Juman 和 Chasen 都是比较老的系统了, Mecab 系统比较新, 在很多方面都优于 Juman 和 Chasen, mecab 目前开发也比较活跃。 Mecab 虽然使用 CRF 实现, 但是解析效率上确相当高效, 据作者的介绍, Mecab 比基于 HMM 的 Chasen 的解析速度要快。 笔者在一台 Linux 机器上粗略测试过其速度,将近达到 2MB/s, 完全达到了工程应用的需求, 该系统目前在日文 NLP 界被广泛使用。

我们曾经介绍过一个非常初级的CRF中文分词实现方案:中文分词入门之字标注法4, 基于CRF++实现了一个Toy级别的CRF中文分词系统,但是还远远不够。在仔细看过这篇日文分词系统MeCab的中文文档并亲测之后,不得不赞这真是 一个理想的CRF分词系统,除了上述所说的优点之外,在使用上它还支持Nbest输出,多种输出格式,全切分模式,系统词典和用户词典定制等等,难怪这套 分词系统在日本NLP界被广泛使用。

MeCab的诸多优点以及它的通用性一直深深吸引着我,但是除了日文资料,相关的中文或英文资料相当匮乏,曾经尝试过基于MeCab的中文翻译文档 以及代码中测试用例中的例子来训练一套中文分词系统,但是第一次以失败告终。这几天,由于偶然的因素又一次捡起了MeCab,然后通过Google及 Google翻译发现了这篇日文文章《MeCabで中国語の形態素解析(分かち書き)をしてみる》,虽其是日语所写,但是主旨是通过MeCab构造一套中文(貌似是繁体)形态(中文分词+词性标注)分析系统,给了我很大的帮助。所以接下来,我会基于这篇文章的提示以及rick翻译文档中第八节“从原始词典/语料库做参数估计”的参考,同时结合backoff2005中微软研究院的中文分词语料来训练一套极简的中文分词系统,至于MeCab的相关介绍及安装使用请参考 日文分词器 Mecab 文档,这里不再赘述。以下是我在Mac OS下的操作记录,同理可推广制Linux下,至于Windows下,请自行测试。一些中文分词的背景知识可参考这里过往的相关文章: 中文分词

剩下内容:http://www.52nlp.cn/%E7%94%A8mecab%E6%89%93%E9%80%A0%E4%B8%80%E5%A5%97%E5%AE%9E%E7%94%A8%E7%9A%84%E4%B8%AD%E6%96%87%E5%88%86%E8%AF%8D%E7%B3%BB%E7%BB%9F