学习Python来分类现实世界的数据

jopen 10年前

引入

一个机器可以根据照片来辨别鲜花的品种吗?在机器学习角度,这其实是一个分类问题,即机器根据不同品种鲜花的数据进行学习,使其可以对未标记的测试图片数据进行分类。这一小节,我们还是从scikit-learn出发,理解基本的分类原则,多动手实践。

Iris数据集

Iris flower数据集是1936年由Sir Ronald Fisher引入的经典多维数据集,可以作为判别分析(discriminant analysis)的样本。该数据集包含Iris花的三个品种(Iris setosa, Iris virginica and Iris versicolor)各50个样本,每个样本还有4个特征参数(分别是萼片的长宽和花瓣的长 宽,以厘米为单位),Fisher利用这个数据集开发了一个线性判别模型来辨别花朵的品种。基于Fisher的线性判别模型,该数据集成为了机器学习中各 种分类技术的典型实验案例。

学习Python来分类现实世界的数据

现在我们要解决的分类问题是,当我们看到一个新的iris花朵,我们能否根据以上测量参数成功预测新iris花朵的品种。

我们利用给定标签的数据,设计一种规则进而应用到其他样本中做预测,这是基本的监督问题(分类问题)。

由于iris数据集样本量和维度都很小,所以可以方便进行可视化和操作。

数据的可视化(visualization)

scikit-learn自带有一些经典的数据集,比如用于分类的iris和digits数据集,还有用于回归分析的boston house prices数据集。可以通过下面的方式载入数据:

from sklearn import datasets  iris = datasets.load_iris()  digits = datasets.load_digits()

该数据集是一种字典结构,数据存储在.data成员中,输出标签存储在.target成员中。

画出任意两维的数据散点图

可以用下面的方式画出任意两个维度的散点图,这里以第一维sepal length和第二维数据sepal width为例:

from sklearn import datasetsimport matplotlib.pyplot as pltimport numpy as np  iris = datasets.load_iris()  irisFeatures = iris["data"]  irisFeaturesName = iris["feature_names"]  irisLabels = iris["target"]  def scatter_plot(dim1, dim2):      for t,marker,color in zip(xrange(3),">ox","rgb"):             # zip()接受任意多个序列参数,返回一个元组tuple列表          # 用不同的标记和颜色画出每种品种iris花朵的前两维数据          # We plot each class on its own to get different colored markers         plt.scatter(irisFeatures[irisLabels == t,dim1],          irisFeatures[irisLabels == t,dim2],marker=marker,c=color)      dim_meaning = {0:'setal length',1:'setal width',2:'petal length',3:'petal width'}      plt.xlabel(dim_meaning.get(dim1))      plt.ylabel(dim_meaning.get(dim2))  plt.subplot(231)  scatter_plot(0,1)  plt.subplot(232)  scatter_plot(0,2)  plt.subplot(233)  scatter_plot(0,3)  plt.subplot(234)  scatter_plot(1,2)  plt.subplot(235)  scatter_plot(1,3)  plt.subplot(236)  scatter_plot(2,3)  plt.show() 

效果如图:

学习Python来分类现实世界的数据

构建分类模型

根据某一维度的阈值进行分类

如果我们的目标是区别这三种花朵,我们可以做一些假设。比如花瓣的长度(petal length)好像将Iris Setosa品种与其它两种花朵区分开来。我们可以以此来写一段小代码看看这个属性的边界是什么:

petalLength = irisFeatures[:,2] #select the third column,since the features is 150*4 isSetosa = (irisLabels == 0) #label 0 means iris Setosa maxSetosaPlength = petalLength[isSetosa].max()  minNonSetosaPlength = petalLength[~isSetosa].min()print ('Maximum of setosa:{0} '.format(maxSetosaPlength))print ('Minimum of others:{0} '.format(minNonSetosaPlength))'''  显示结果是:  Maximum of setosa:1.9   Minimum of others:3.0   '''

我们根据实验结果可以建立一个简单的分类模型,如果花瓣长度小于2,就是Iris Setosa花朵,否则就是其他两种花朵。

这个模型的结构非常简单,是由数据的一个维度阈值来确定的。我们通过实验确定这个维度的最佳阈值。

以上的例子将Iris Setosa花朵和其他两种花朵很容易的分开了,然而我们不能立即确定Iris Virginica花朵和Iris Versicolor花朵的最佳阈值,我们甚至发现,我们无法根据某一维度的阈值将这两种类别很完美的分开。

比较准确率来得到阈值

我们先选出非Setosa的花朵。

irisFeatures = irisFeatures[~isSetosa] labels = irisLabels[~isSetosa] isVirginica = (labels == 2)    #label 2 means iris virginica

这里我们非常依赖NumPy对于数组的操作,isSetosa是一个Boolean值数组,我们可以用它来选择出非Setosa的花朵。最后,我 们还构造了一个新的Boolean数组,isVirginica。接下来,我们对每一维度的特征写一个循环小程序,然后看一下哪一个阈值能得到更好的准确 率。

# search the threshold between virginica and versicolor irisFeatures = irisFeatures[~isSetosa]  labels = irisLabels[~isSetosa]  isVirginica = (labels == 2) #label 2 means iris virginica bestAccuracy = -1.0 for fi in xrange(irisFeatures.shape[1]):  thresh = irisFeatures[:,fi].copy()  thresh.sort()for t in thresh:  pred = (irisFeatures[:,fi] > t)  acc = (pred == isVirginica).mean()if acc > bestAccuracy:  bestAccuracy = acc;  bestFeatureIndex = fi;  bestThreshold = t;print 'Best Accuracy:\t\t',bestAccuracyprint 'Best Feature Index:\t',bestFeatureIndexprint 'Best Threshold:\t\t',bestThreshold'''  最终结果:  Best Accuracy:  0.94  Best Feature Index: 3  Best Threshold:  1.6  ''' 

这里我们首先对每一维度进行排序,然后从该维度中取出任一值作为阈值的一个假设,再计算这个假设的Boolean序列和实际的标签Boolean 序列的一致情况,求平均,即得到了准确率。经过所有的循环,最终得到的阈值和所对应的维度。最后,我们得到了最佳模型针对第四维花瓣的宽度petal width,我们就可以得到这个决策边界decision boundary。

评估模型——交叉检验

上面,我们得到了一个简单的模型,并且针对训练数据实现了94%的正确率,但这个模型参数可能过于优化了。

我们需要的是评估模型针对新数据的泛化能力,所以我们需要保留一部分数据,进行更加严格的评估,而不是用训练数据做测试数据。为此,我们会保留一部分数据进行交叉检验。

这样我们就会得到训练误差和测试误差,当复杂的模型下,可能训练的准确率是100%,但是测试时效果可能只是比随机猜测好一点。

交叉检验

在许多实际应用中,数据是不充足的。为了选择更好的模型,可以采用交叉检验方法。 交叉检验的基本想法是重复地使用数据;把给定数据进行切分,将切分的数据集组合为训练集和测试集,在此基础上反复地进行训练、测试以及模型选择。

S-fold交叉检验

应用最多的是S折交叉检验(S-fold cross validation),方法如下:首先随机地将已给数据切分为S个互不相交的大小相同的子集;然后利用S-1个子集的数据训练模型,利用余下的子集测试 模型;将这一过程对可能的S种选择重复进行;最后选出S次评测中平均测试误差最小的模型。

学习Python来分类现实世界的数据

如上图,我们将数据集分成5部分,即5-fold交叉检验。接下来,我们可以对每一个fold生成一个模型,留出20%的数据进行检验。

leave-one-out交叉检验方法

留一交叉检验(leave-one-out cross validation)是S折交叉检验的特殊情形,是S为给定数据集的容量时情形。我们可以从训练数据中挑选一个样本,然后拿其他训练数据得到模型,最后看该模型是否能将这个挑出来的样本正确的分类。

def learn_model(features,labels): bestAccuracy = -1.0 for fi in xrange(features.shape[1]):  thresh = features[:,fi].copy()  thresh.sort()for t in thresh:  pred = (features[:,fi] > t)  acc = (pred == labels).mean()if acc > bestAccuracy:  bestAccuracy = acc;  bestFeatureIndex = fi;  bestThreshold = t;'''  print 'Best Accuracy:\t\t',bestAccuracy  print 'Best Feature Index:\t',bestFeatureIndex  print 'Best Threshold:\t\t',bestThreshold  ''' return {'dim':bestFeatureIndex, 'thresh':bestThreshold, 'accuracy':bestAccuracy}def apply_model(features,labels,model): prediction = (features[:,model['dim']] > model['thresh'])return prediction#-----------cross validation------------- error = 0.0 for ei in range(len(irisFeatures)):# select all but the one at position 'ei': training = np.ones(len(irisFeatures), bool)  training[ei] = False testing = ~training  model = learn_model(irisFeatures[training], isVirginica[training])  predictions = apply_model(irisFeatures[testing],    isVirginica[testing], model)  error += np.sum(predictions != isVirginica[testing]) 

上面的程序,我们用所有的样本对一系列的模型进行了测试,最终的估计说明了模型的泛化能力。

小结

对于上面对数据集进行划分时,我们需要注意平衡分配数据。如果对于一个子集,所有的数据都来自一个类别,则结果没有代表性。基于以上的讨论,我们利用一个简单的模型来训练,交叉检验过程给出了这个模型泛化能力的估计。

参考文献

Wiki:Iris flower data set

Building Machine Learning Systems with Python

转载请注明作者Jason Ding及其出处

Github主页(http://jasonding1354.github.io/)

CSDN博客(http://blog.csdn.net/jasonding1354)

简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)

来自:http://www.thebigdata.cn/JieJueFangAn/12961.html