用Swift实现23种设计模式的示例

jopen 10年前

设计模式(Design pattern)是一套被反复使用、多数人知晓的、经过分类编目的、代码设计经验的总结。使用设计模式是为了可重用代码、让代码更容易被他人理解、保证代码可靠性。 毫无疑问,设计模式于己于他人于系统都是多赢的;设计模式使代码编制真正工程化;设计模式是软件工程的基石脉络,如同大厦的结构一样。
     

?? Singleton

class SingletonClass {
    class var shared : SingletonClass {

        struct Static {
            static let instance : SingletonClass = SingletonClass()
        }

        return Static.instance
    }
}

Usage:

let instance = SingletonClass.shared

?? Builder

protocol ThreeDimensions {
    var x: Double? {get}
    var y: Double? {get}
    var z: Double? {get}
}

class Point : ThreeDimensions {
    var x: Double?
    var y: Double?
    var z: Double?

    typealias PointBuilderClosure = (Point) -> ()

    init(buildClosure: PointBuilderClosure) {
        buildClosure(self)
    }
}

Usage:

let fancyPoint = Point { point in
    point.x = 0.1
    point.y = 0.2
    point.z = 0.3
}

fancyPoint.x
fancyPoint.y
fancyPoint.z

Shorter but oh-so-ugly alternative:

let uglierPoint = Point {
    $0.x = 0.1
    $0.y = 0.2
    $0.z = 0.3
}

?? Abstract Factory

// Protocols.

protocol Decimal {
    func stringValue() -> String
}

protocol NumberFactoryProtocol {
    func numberFromString(string : String) -> Decimal
}

// Number implementations.

struct NextStepNumber : Decimal {
    private var nextStepNumber : NSNumber

    func stringValue() -> String { return nextStepNumber.stringValue }
}

struct SwiftNumber : Decimal {
    private var swiftInt : Int

    func stringValue() -> String { return "(swiftInt)" }
}

// Factories.

class NextStepNumberFactory : NumberFactoryProtocol {
    func numberFromString(string : String) -> Decimal {
        return NextStepNumber(nextStepNumber:NSNumber(longLong:(string as NSString).longLongValue))
    }
}

class SwiftNumberFactory : NumberFactoryProtocol {
    func numberFromString(string : String) -> Decimal {
        return SwiftNumber(swiftInt:(string as NSString).integerValue)
    }
}

// Abstract factory.

enum NumberType {
    case NextStep, Swift
}

class NumberAbstractFactory {
    class func numberFactoryType(type : NumberType) -> NumberFactoryProtocol {

        switch type {
            case .NextStep:
                    return NextStepNumberFactory()
            case .Swift:
                    return SwiftNumberFactory()
        }
    }
}

Usage:

let factoryOne = NumberAbstractFactory.numberFactoryType(.NextStep)
let numberOne = factoryOne.numberFromString("1")
numberOne.stringValue()

let factoryTwo = NumberAbstractFactory.numberFactoryType(.Swift)
let numberTwo = factoryTwo.numberFromString("2")
numberTwo.stringValue()

?? Prototype

class ThieveryCorporationPersonDisplay {
    var name: String?
    let font: String

    init(font: String) {
        self.font = font
    }

    func clone() -> ThieveryCorporationPersonDisplay {
        return ThieveryCorporationPersonDisplay(font:self.font)
    }
}

Usage:

let Prototype = ThieveryCorporationPersonDisplay(font:"Ubuntu")

let Philippe = Prototype.clone()
Philippe.name = "Philippe"

let Christoph = Prototype.clone()
Christoph.name = "Christoph"

let Eduardo = Prototype.clone()
Eduardo.name = "Eduardo"

?? Factory Method

protocol Currency {
    func symbol() -> String
    func code() -> String
}

class Euro : Currency {
    func symbol() -> String {
        return "€"
    }

    func code() -> String {
        return "EUR"
    }
}

class UnitedStatesDolar : Currency {
    func symbol() -> String {
        return "$"
    }

    func code() -> String {
        return "USD"
    }
}

enum Country {
    case UnitedStates, Spain, France, UK
}

class CurrencyFactory {
    class func currencyForCountry(country:Country) -> Currency? {

        switch country {
            case .Spain, .France :
                return Euro()
            case .UnitedStates :
                return UnitedStatesDolar()
            default:
                return nil
        }

    }
}

Usage:

let noCurrencyCode = "No Currency Code Available"

CurrencyFactory.currencyForCountry(.Spain)?.code() ?? noCurrencyCode
CurrencyFactory.currencyForCountry(.UnitedStates)?.code() ?? noCurrencyCode
CurrencyFactory.currencyForCountry(.France)?.code() ?? noCurrencyCode
CurrencyFactory.currencyForCountry(.UK)?.code() ?? noCurrencyCode

Structural

    In software engineering, structural design patterns are design patterns that ease the design by identifying a simple way to realize relationships between entities.

    Source: wikipedia.org

?? Composite

/
   Component
 
/
protocol Shape {
    func draw(fillColor: String)
}

/

  Leafs
 
/
class Square : Shape {
    func draw(fillColor: String) {
        print("Drawing a Square with color (fillColor)")
    }
}

class Circle : Shape {
    func draw(fillColor: String) {
        print("Drawing a circle with color (fillColor)")
    }
}

/*
Composite
/
class Whiteboard : Shape {
    lazy var shapes = Shape

    init(_ shapes:Shape...) {
        self.shapes = shapes
    }

    func draw(fillColor:String) {
        for shape in self.shapes {
            shape.draw(fillColor)
        }
    }
}

Usage:

var whiteboard = Whiteboard(Circle(), Square())
whiteboard.draw("Red")

?? Fa?ade

class Eternal {

    class func setObject(value: AnyObject!, forKey defaultName: String!) {
        let defaults:NSUserDefaults = NSUserDefaults.standardUserDefaults()
        defaults.setObject(value, forKey:defaultName)
        defaults.synchronize()
    }

    class func objectForKey(defaultName: String!) -> AnyObject! {
        let defaults:NSUserDefaults = NSUserDefaults.standardUserDefaults()

        return defaults.objectForKey(defaultName)
    }

}

Usage:

Eternal.setObject("Disconnect me. I’d rather be nothing", forKey:"Bishop")
Eternal.objectForKey("Bishop")

?? Adapter

// WARNING: This example uses Point class from Builder pattern!

class PointConverter {

    class func convert(#point:Point, base:Double, negative:Bool) -> Point {

        var pointConverted = Point{
            if let x = point.x { $0.x = x
base (negative ? -1.0 : 1.0) }
            if let y = point.y { $0.y = y
base (negative ? -1.0 : 1.0) }
            if let z = point.z { $0.z = z
base * (negative ? -1.0 : 1.0) }
        }

        return pointConverted
    }
}

extension PointConverter{

    class func convert(#x:Double!, y:Double!, z:Double!, base:Double!, negative:Bool!) -> (x:Double!,y:Double!,z:Double!) {
        var point = Point{ $0.x = x; $0.y = y; $0.z = z }
        var pointCalculated = self.convert(point:point, base:base, negative:negative)

        return (pointCalculated.x!,pointCalculated.y!,pointCalculated.z!)
    }

}

Usage:

var tuple = PointConverter.convert(x:1.1, y:2.2, z:3.3, base:2.0, negative:true)

tuple.x
tuple.y
tuple.z

?? Bridge

protocol Switch {
    var appliance: Appliance {get set}
    func turnOn()
}

protocol Appliance {
    func run()
}

class RemoteControl: Switch {
    var appliance: Appliance

    func turnOn() {
        self.appliance.run()
    }

    init(appliance: Appliance) {
        self.appliance = appliance
    }
}

class TV: Appliance {
    func run() {
        println("tv turned on");
    }
}

class VacuumCleaner: Appliance {
    func run() {
        println("vacuum cleaner turned on")
    }
}

Usage

var tvRemoteControl = RemoteControl(appliance: TV())
tvRemoteControl.turnOn()

var fancyVacuumCleanerRemoteControl = RemoteControl(appliance: VacuumCleaner())
fancyVacuumCleanerRemoteControl.turnOn()

?? Decorator

protocol Coffee {
    func getCost() -> Double
    func getIngredients() -> String
}

class SimpleCoffee: Coffee {
    func getCost() -> Double {
        return 1.0
    }

    func getIngredients() -> String {
        return "Coffee"
    }
}

class CoffeeDecorator: Coffee {
    private let decoratedCoffee: Coffee
    private let ingredientSeparator: String = ", "

    required init(decoratedCoffee: Coffee) {
        self.decoratedCoffee = decoratedCoffee
    }

    func getCost() -> Double {
        return decoratedCoffee.getCost()
    }

    func getIngredients() -> String {
        return decoratedCoffee.getIngredients()
    }
}

class Milk: CoffeeDecorator {
    required init(decoratedCoffee: Coffee) {
        super.init(decoratedCoffee: decoratedCoffee)
    }

    override func getCost() -> Double {
        return super.getCost() + 0.5
    }

    override func getIngredients() -> String {
        return super.getIngredients() + ingredientSeparator + "Milk"
    }
}

class WhipCoffee: CoffeeDecorator {
    required init(decoratedCoffee: Coffee) {
        super.init(decoratedCoffee: decoratedCoffee)
    }

    override func getCost() -> Double {
        return super.getCost() + 0.7
    }

    override func getIngredients() -> String {
        return super.getIngredients() + ingredientSeparator + "Whip"
    }
}

Usage:

var someCoffee: Coffee = SimpleCoffee()
println("Cost : (someCoffee.getCost()); Ingredients: (someCoffee.getIngredients())")
someCoffee = Milk(decoratedCoffee: someCoffee)
println("Cost : (someCoffee.getCost()); Ingredients: (someCoffee.getIngredients())")
someCoffee = WhipCoffee(decoratedCoffee: someCoffee)
println("Cost : (someCoffee.getCost()); Ingredients: (someCoffee.getIngredients())")

?? Virtual Proxy

Source:

protocol HEVSuitMedicalAid {
    func administerMorphine() -> String
}

class HEVSuit : HEVSuitMedicalAid {
    func administerMorphine() -> String {
        return "Morphine aministered."
    }
}

class HEVSuitHumanInterface : HEVSuitMedicalAid {
    lazy private var physicalSuit: HEVSuit = HEVSuit()

    func administerMorphine() -> String {
        return physicalSuit.administerMorphine()
    }
}

Usage:

let humanInterface = HEVSuitHumanInterface()
humanInterface.administerMorphine()

? Protection Proxy

Source:

protocol DoorOperator {
    func openDoors(doors: String) -> String
}

class HAL9000 : DoorOperator {
    func openDoors(doors: String) -> String {
        return ("HAL9000: Affirmative, Dave. I read you. Opened (doors).")
    }
}

class CurrentComputer : DoorOperator {
    private var computer: HAL9000!

    func authenticateWithPassword(pass: String) -> Bool {

        if pass != "pass" {
            return false
        }

        computer = HAL9000()

        return true
    }

    func openDoors(doors: String) -> String {

        if (computer == nil) {
            return "Access Denied. I'm afraid I can't do that."
        }

        return computer.openDoors(doors)
    }
}

Usage:

let computer = CurrentComputer()
let doors = "Pod Bay Doors"

computer.openDoors(doors)

computer.authenticateWithPassword("pass")
computer.openDoors(doors)

Behavioral

    In software engineering, behavioral design patterns are design patterns that identify common communication patterns between objects and realize these patterns. By doing so, these patterns increase flexibility in carrying out this communication.

    Source: wikipedia.org

?? Chain Of Responsibility

Source:

class MoneyPile {
    let value: Int
    var quantity: Int
    var nextPile: MoneyPile?

    init(value: Int, quantity: Int, nextPile: MoneyPile?) {
        self.value = value
        self.quantity = quantity
        self.nextPile = nextPile
    }

    func canWithdraw(var v: Int) -> Bool {

        func canTakeSomeBill(want: Int) -> Bool {
            return (want / self.value) > 0
        }

        var q = self.quantity

        while canTakeSomeBill(v) {

            if (q == 0) {
                break
            }

            v -= self.value
            q -= 1
        }

        if v == 0 {
            return true
        } else if let next = self.nextPile {
            return next.canWithdraw(v)
        }

        return false
    }
}

class ATM {
    private var hundred: MoneyPile
    private var fifty: MoneyPile
    private var twenty: MoneyPile
    private var ten: MoneyPile

    private var startPile: MoneyPile {
        return self.hundred
    }

    init(hundred: MoneyPile,
           fifty: MoneyPile,
          twenty: MoneyPile,
             ten: MoneyPile) {

        self.hundred = hundred
        self.fifty = fifty
        self.twenty = twenty
        self.ten = ten
    }

    func canWithdraw(value: Int) -> String {
        return "Can withdraw: (self.startPile.canWithdraw(value))"
    }
}

Usage:

// Create piles of money and link them together 10 < 20 < 50 < 100.
let ten = MoneyPile(value: 10, quantity: 6, nextPile: nil)
let twenty = MoneyPile(value: 20, quantity: 2, nextPile: ten)
let fifty = MoneyPile(value: 50, quantity: 2, nextPile: twenty)
let hundred = MoneyPile(value: 100, quantity: 1, nextPile: fifty)

// Build ATM.
var atm = ATM(hundred: hundred, fifty: fifty, twenty: twenty, ten: ten)
atm.canWithdraw(310) // Cannot because ATM has only 300
atm.canWithdraw(100) // Can withdraw - 1x100
atm.canWithdraw(165) // Cannot withdraw because ATM doesn't has bill with value of 5
atm.canWithdraw(30)  // Can withdraw - 1x20, 2x10

?? Command

protocol FileOperationCommand {
    init(file: String)
    func execute()
}

class FileMoveCommand : FileOperationCommand {
    let file:String

    required init(file: String) {
        self.file = file
    }

    func execute() {
        print("(file) moved")
    }
}

class FileDeleteCommand : FileOperationCommand {
    let file:String

    required init(file: String) {
        self.file = file
    }

    func execute() {
        print("(file) deleted")
    }
}

class FileManager {
    let deleteCommand: FileOperationCommand
    let moveCommand: FileOperationCommand

    init(deleteCommand: FileDeleteCommand, moveCommand: FileMoveCommand) {
        self.deleteCommand = deleteCommand
        self.moveCommand = moveCommand
    }

    func delete() {
        deleteCommand.execute()
    }

    func move() {
        moveCommand.execute()
    }
}

Usage:

let deleteCommand = FileDeleteCommand(file: "/path/to/testfile")
let moveCommand = FileMoveCommand(file: "/path/to/testfile")
let fileManager = FileManager(deleteCommand:deleteCommand , moveCommand: moveCommand)

fileManager.delete()
fileManager.move()

?? Iterator
?? Mediator
?? Memento
?? Observer

class StepCounter {
    var totalSteps: Int = 0 {

        willSet(newTotalSteps) {
            println("About to set totalSteps to (newTotalSteps)")
        }

        didSet {

            if totalSteps > oldValue  {
                println("Added (totalSteps - oldValue) steps")
            }
        }
    }
}

Usage:

let stepCounter = StepCounter()
stepCounter.totalSteps = 200
// About to set totalSteps to 200
// Added 200 steps
stepCounter.totalSteps = 360
// About to set totalSteps to 360
// Added 160 steps
stepCounter.totalSteps = 896
// About to set totalSteps to 896
// Added 536 steps

?? State

class Context {
    private var state: State = UnauthorizedState()

    var isAuthorized: Bool {
        get { return state.isAuthorized(self) }
    }

    var userId: String? {
        get { return state.userId(self) }
    }

    func changeStateToAuthorized(#userId: String) {
        state = AuthorizedState(userId: userId)
    }

    func changeStateToUnauthorized() {
        state = UnauthorizedState()
    }


}

protocol State {
    func isAuthorized(context: Context) -> Bool
    func userId(context: Context) -> String?
}

class UnauthorizedState: State {
    func isAuthorized(context: Context) -> Bool { return false }

    func userId(context: Context) -> String? { return nil }
}

class AuthorizedState: State {
    let userId: String

    init(userId: String) { self.userId = userId }

    func isAuthorized(context: Context) -> Bool { return true }

    func userId(context: Context) -> String? { return userId }
}

Usage:

let context = Context()
(context.isAuthorized, context.userId)
context.changeStateToAuthorized(userId: "admin")
(context.isAuthorized, context.userId) // now logged in as "admin"
context.changeStateToUnauthorized()
(context.isAuthorized, context.userId)

?? Strategy

protocol PrintStrategy {
    func printString(string: String) -> String
}

class Printer {

    let strategy: PrintStrategy

    func printString(string: String) -> String {
        return self.strategy.printString(string)
    }

    init(strategy: PrintStrategy) {
        self.strategy = strategy
    }
}

class UpperCaseStrategy : PrintStrategy {
    func printString(string:String) -> String {
        return string.uppercaseString
    }
}

class LowerCaseStrategy : PrintStrategy {
    func printString(string:String) -> String {
        return string.lowercaseString
    }
}

Usage:

var lower = Printer(strategy:LowerCaseStrategy())
lower.printString("O tempora, o mores!")

var upper = Printer(strategy:UpperCaseStrategy())
upper.printString("O tempora, o mores!")

?? Visitor

protocol PlanetVisitor {
    func visit(planet: PlanetEarth)
    func visit(planet: PlanetMars)
    func visit(planet: PlanetGliese581C)
}

protocol Planet {
    func accept(visitor: PlanetVisitor)
}

class PlanetEarth: Planet {
    func accept(visitor: PlanetVisitor) { visitor.visit(self) }
}
class PlanetMars: Planet {
    func accept(visitor: PlanetVisitor) { visitor.visit(self) }
}
class PlanetGliese581C: Planet {
    func accept(visitor: PlanetVisitor) { visitor.visit(self) }
}

class NameVisitor: PlanetVisitor {
    var name = ""

    func visit(planet: PlanetEarth)      { name = "Earth" }
    func visit(planet: PlanetMars)       { name = "Mars" }
    func visit(planet: PlanetGliese581C) { name = "Gliese 581 C" }
}

Usage:

let planets: [Planet] = [PlanetEarth(), PlanetMars(), PlanetGliese581C()]

let names = planets.map { (planet: Planet) -> String in
    let visitor = NameVisitor()
    planet.accept(visitor)
    return visitor.name
}

names


https://github.com/ochococo/Design-Patterns-In-Swift