</div>
</div> 因此,确定了 mysqld有多少可用内存, 就可以设置为 20% ~ 70%,但需要适当的减少一些.
如果系统报错,例如
[ERROR] /usr/libexec/mysqld: Out of memory (Needed xxx bytes) , 可能是MySQL申请了超过操作系统允许的内存范围. 需要减小缓存设置.
64位OS与32位MySQL 64位操作系统不受4 GB内存的限制,但32位MySQL依然受这个限制.
如果你有 4 GB以上的内存,那么可以设置:
- key_buffer_size = 20%(所有RAM的),但不要超过3 GB.
- buffer_pool = 3G
当然最好的办法是将MySQL换成64位版本.
64位OS与64位MySQL - 只使用MyISAM引擎: (5.0.52 ~ 5.1.23之前的)key_buffer_size有 4GB的硬性限制. 详情请参考MySQL 5.1 限制(restrictions) 在更高版本中,设置 key_buffer_size 为 20%的RAM. 在(my.cnf / my.ini)中加上 innodb_buffer_pool_size = 0.
- 只使用InnoDB引擎: 设置 innodb_buffer_pool_size = 70%的RAM. 如果内存很大,并使用 5.5(及以上)版本,可以考虑使用 多个缓存池. 推荐设置 1 - 16 个 innodb_buffer_pool_instances, 每个都不小于1 GB. (很抱歉,没有最优设置为多少个的具体参考指标;但应该不能设置太多).
与此同时,设置 key_buffer_size = 20M(很小,但不是零)
如果你在数据库中混合使用多个引擎,将两个值都降低一些.
最大连接数,线程栈
(max_connections,thread_stack) 每个“线程”都要占用一定的内存. 通常为 200 KB左右; 因此 100个线程大概就是 20 MB. 如果设置
max_connections = 1000,那大概就需要 200 MB,或者更多. 同时连接数太大可能会引起其他某些问题,这点需要注意.
在5.6(或 MariaDB5.5)中,可以选择线程池与 max_connections 交互. 这是一个高级话题.
线程栈溢出很少出现. 如果确实发生了,可以设置: thread_stack = 256K
点击查看更多关于max_connections, wait_timeout,连接池的讨论
table_cache(table_open_cache) (某些版本中名字不一样).
操作系统对单个进程能打开的文件数有限制. 打开每个表需要 1-3个文件. 每个表分区(PARTITION)等价于一个表. 在分区表上的多数操作都会打开所有的分区.
在 *nix中, ulimit 显示文件限制是多少. 最大值一般是上万,但有可能被设置为 1024. 这就限制了只能打开300个左右的表.
更多关于ulimit的讨论请点击这里 (
这一段是有争议的.) 另一方面,表缓存(过去?)的实现方式很低效 —— 查找通过线性扫描来完成. 因此,设置 table_cache 为几千确实会使得 mysql变慢. (基准测试也证明了这一点.)
你可以通过
SHOW GLOBAL STATUS; 查看系统的性能信息, 并计算 每秒打开数(opens/second): Opened_files /Uptime , 如果这个值较大,例如大于 5, 那么应该加大 table_cache; 如果很小,比如是 1,通过减小 table_cache 值,可能会对性能有所改善.
查询缓存(Query Cache) 简短的回答: 设置
query_cache_type = OFF 及
query_cache_size = 0 QC(Query Cache)实际上是将 SELECT语句与结果集(resultsets)进行散列映射.
详细的回答…… 关于“查询缓存”有许多种观点; 其中许多是负面的.
- 新手警告! QC与key_buffer和buffer_pool完全无关.
- 当命中时, QC速度快如闪电. 要创建一个运行快1000倍的基准测试并不难.
- 在QC中只有一个互斥锁(译者注: 锁越少,就是锁钥匙越少,高并发时就会激烈竞争/等待).
- 除非将QC设置为OFF与0,否则每次查询都会去对比一遍.
- 真相,互斥锁会发生碰撞,即使 query_cache_type = DEMAND (2).
- 真相,互斥锁会发生碰撞,即便设置了 SQL_NO_CACHE.
- 查询语句只要变了一点点(即使多了个空格)都可能导致在QC中生成多个不同的缓存项.
“
修改”是代价高昂与频繁的:
- 在一个表中发生任何 write 事件, QC中对应到这个表的所有条目都会被清除.
- 即便在只读从服务器(readonly Slave)上也是这样.
- 清除使用的是线性算法来执行,所以QC较大(比如200MB)则会导致速度明显地变慢.
要查看QC的执行效率如何,执行
SHOW GLOBAL STATUS LIKE 'Qc%'; 然后计算read的命中率: Qcache_hits / Qcache_inserts, 如果大于5,则 QC的效率还不错.
如果QC适合你的应用,那么我推荐:
- query_cache_size = 不超过50M
- query_cache_type = DEMAND
- 在所有 SELECT 语句中指明 SQL_CACHE 或 SQL_NO_CACHE, 根据哪些查询可能会从QC缓存中命中.
深入了解Query Cache
thread_cache_size 这是一个很小的调优项. 设置为 0 会降低线程(连接)创建的速度. 设置为较小的值(比如 10) 是比较好的. 该选项对RAM没有多少影响.
它是服务器额外保持的线程数量,不会影响实际线程数; 起限制作用的是 max_connections.
二进制日志 如果为 复制(replication) 或 时间点恢复(point-in-time recovery) 启用二进制日志(通过 og_bin开启), 则服务器将一直记录二进制日志(binary logs). 也就是说,可能慢慢地占用磁盘. 建议设置
expire_logs_days = 14 ,只保留14天的日志记录.
swappiness RHEL,非常英明地,允许用户自己控制 OS 如何进行预先内存交换分配. 总的来说这是很好的策略,但对MySQL来说则是一个灾难.
(感觉翻译的有点不流畅,本段原文为: RHEL, in its infinite wisdom, decided to let you control how aggressively the OS will preemptively swap RAM. This is good in general, but lousy for MySQL)
MySQL期望相当稳定的内存分配 —— 缓存(大部分)是预先分配的; 线程(大都)是限制数量的. 任何内存交换都可能极大地损害MySQL的性能.
设置很高的swappiness值,会丢失一些内存,因为操作系统试图为以后的分配保留大量的自由空间(MySQL一般是不需要的).
设置swappiness = 0,不交换,在内存不足时操作系统可能会崩溃,. 我宁愿MySQL一卡一卡的,也不希望他崩了.
对于MySQL-only(专用)服务器, 中间数(比如5 ?)可能是一个很好的值.
NUMA OK,是时候了解一些CPU管理内存的架构了. 我们先看
NUMA(Non-Uniform Memory Access, 非统一内存寻址). 每个CPU(或多路服务器中的每个socket(CPU插座)) 都挂载有一部分内存. 这使得访问本地(local) RAM 非常快, 而访问挂载在其他 CPU下的RAM要慢上数十个周期.
接着看操作系统. 在(RHEL ?)很多情形下,有两个行为:
- OS分配的内存固定到 “first(第一个)” CPU名下.
- 接着分配的其他内存也默认分配到第一个CPU名下,直到它满了.
现在问题来了.
- OS与MySQL分配完了第一个 CPU的所有RAM.
- MySQL分配了第二个 CPU的部分内存.
- 操作系统OS还需要分配一些其他内存.
Ouch —— 一个CPU需要分配内存,但自己名下控制的RAM已经耗尽了,所以它将MySQL的部分内存置换出去. 渣渣!
可能的解决方案:配置BIOS内存分配为 “interleave”(交错). 这将防止过早交换(premature swapping),代价是有一半左右的 RAM 访问要跨CPU(off-CPU). 嗯,不论如何访问的代价都较大, 如果真的要使用所有内存的话.
整体性能损失/收益:几个百分点.
大内存分页(huge pages) 这里有另一个硬件性能陷阱.
CPU 访问RAM,特别是将64位地址映射到某个地方, 比如 128 GB 或“真实”的RAM,会使用TLB. (TLB =Translation Lookaside Buffer,旁路转换缓冲.) TLB是硬件实现的内存关联查找表; 将64位的虚拟地址转换到实际的物理地址.
因为TLB是一个小的,虚拟寻址的缓存,有时会发生 “misses”(未命中),那就会进入物理RAM来查找. 这是两次查找是很费时的操作,所以应该避免.
通常,内存被 “分页” 为 4 KB一页,TLB实际上将高位的(64 - 12)位映射到一个特定页面. 而低12位通过虚地址转换得到完整的地址.
例如,128 GB的RAM按 4 KB分页需要 32M(3200万个) page-table条目. 这太大了, 远远超过TLB的容量. 所以陷入了“Huge page”的骗局.
随着硬件与操作系统的支持,使部分RAM成为巨型页面成为可能 ,比如说4 MB(而不是4 KB). 这使得TLB条目剧减,对这部分RAM来说分页单元是4 MB. 因此,巨大的页面相当于是不分页的(non-pagable).
现在内存被分为 pagable 和 non pagable 两部分; 哪些部分 non pagable 是合理的? 在MySQL中, innodb_buffer_pool 就是一个完美的使用者. 通过正确地配置这些,InnoDB能跑得更快一点:
- 启用 Huge pages
- 通知操作系统分配适当的数量(和 buffer_pool 个数一致)
- 通知MySQL使用huge pages
innodb memory usage vs swap 该帖包含有很多需要关注点以及如何设置的细节.
整体性能收益:几个百分点. Yawn.
MEMORY引擎(ENGINE=MEMORY) 这是一个不常用的存储引擎,算是MyISAM和InnoDB的替代品. 其数据不是持久的,所以其应用范围相当有限. 内存表的大小受限于 max_heap_table_size ,默认值是16 MB. 我提起它,以防你将此值修改得太大;这会偷偷地占用可用的RAM.
如何设置变量(VARIABLEs) 在文本文件my.cnf中(Windows上是my.ini),添加一行,例如
innodb_buffer_pool_size = 5G 即: 变量名,等号“=”,变量的值. 有些值允许缩写,如M代表 million(1048576),G代表billion.
要让服务器看到这些设置,必须将其放到配置文件的 “[mysqld]”节下.
对 my.cnf 或 my.ini的设置不会立即生效,需要你重启服务器.
大多数的设置可以通过 root 账号登陆后在线修改 (其他 SUPER权限账号也可以),例如:
SET @@global.key_buffer_size = 77000000; 注意:此处不允许设置 M 或 G 等单位.
查看全局变量的设置信息:
</div> </div> 注意,这部分设置MySQL会向下取整,对齐到一定的数字.
你可能需要修改两个地方(执行SET 并修改my.cnf),以使修改立即生效,并且下次重启后依然是同样的值(不管是手动,还是其他原因重新启动)
Web服务器 像Apache这样的web服务器使用多线程来处理. 如果每个线程打开一个 MySQL连接,可能会超过允许的最大连接数. 确保将web服务器的 MaxClients (或类似参数) 设置为一个合理的值(如50以下).
工具
MySQLTuner
TUNING-PRIMER
上面是几个对内存设置建议的工具. 其中有一个误导性条目:
Maximum possible memory usage: 31.3G (266% of installed RAM)
可能使用的内存最大值为: 31.3G (可能是物理内存的 266%)
不要让它吓到你,这些工具使用的公式过于保守了. 他们假设所有 max_connections 都在使用并且处于活跃状态,并正在执行一些内存密集型的工作.
Total fragmented tables: 23 有碎片的tables: 23 个
这意味着 OPTIMIZE TABLE 可能会有作用. 我建议对表设置高百分比的 “free space”(见SHOW TABLE STATUS) 或者你知道对什么表做了大量的删除/更新操作. 不过,不必费心频繁地对table进行OPTIMIZE 优化整理. 一个月一次可能就够了.
文章修改记录 2010创建;2012年10月更新,2014年1月更新;
更深入的文章:
MySQL 5.6的调优 InnoDB性能优化的基本知识(终极版) MySQL安装后的10项优化设置 通过
MySQL论坛::性能 联系作者 ——里克·詹姆斯
里克·詹姆斯的MySQL相关文档 提示,调试、howto、优化相关等等……
Rick's RoTs (Rules of Thumb -- lots of tips)
Memory Allocation (caching, etc)
Character Set and Collation problem solver
Converting from MyISAM to InnoDB -- includes differences between them
Big DELETEs - how to optimize
Compound INDEXes plus other insights into the mysteries of INDEXing
Partition Maintenance (DROP+REORG) for time series
Entity-Attribute-Value -- a common, poorly performing, design patter; plus an alternative
Find the nearest 10 pizza parlors (efficient searching on Latitude + Longitude)
Alter of a Huge table
Latest 10 news articles -- how to optimize the schema and code for such
Pagination, not with OFFSET, LIMIT
Data Warehouse techniques (esp., Summary Tables)
Techniques on efficiently finding a random row (On beyond ORDER BY RAND())
GUID/UUID Performance (type 1 only)
IP Range Table Performance
MySQL Limits
Galera Limitations (with Percona XtraDB Cluster / MariaDB)
Rollup Unique User Counts
Best of MySQL Forum
来自:http://blog.csdn.net/renfufei/article/details/27372897