Hadoop 中利用 mapreduce 读写 mysql 数据
有时候我们在项目中会遇到输入结果集很大,但是输出结果很小,比如一些 pv、uv 数据,然后为了实时查询的需求,或者一些 OLAP 的需求,我们需要 mapreduce 与 mysql 进行数据的交互,而这些是 hbase 或者 hive 目前亟待改进的地方。
好了言归正传,简单的说说背景、原理以及需要注意的地方:
1、为了方便 MapReduce 直接访问关系型数据库(Mysql,Oracle),Hadoop提供了DBInputFormat和DBOutputFormat两个类。通过DBInputFormat类把数据库表数据读入到HDFS,根据DBOutputFormat类把MapReduce产生的结果集导入到数据库表中。
2、由于0.20版本对DBInputFormat和DBOutputFormat支持不是很好,该例用了0.19版本来说明这两个类的用法。
至少在我的 0.20.203 中的 org.apache.hadoop.mapreduce.lib 下是没见到 db 包,所以本文也是以老版的 API 来为例说明的。
3、运行MapReduce时候报错:java.io.IOException: com.mysql.jdbc.Driver,一般是由于程序找不到mysql驱动包。解决方法是让每个tasktracker运行MapReduce程序时都可以找到该驱动包。
添加包有两种方式:
(1)在每个节点下的${HADOOP_HOME}/lib下添加该包。重启集群,一般是比较原始的方法。
(2)a)把包传到集群上: hadoop fs -put mysql-connector-java-5.1.0- bin.jar /hdfsPath/
b)在mr程序提交job前,添加语句:DistributedCache.addFileToClassPath(new Path(“/hdfsPath/mysql- connector-java- 5.1.0-bin.jar”), conf);
(3)虽然API用的是0.19的,但是使用0.20的API一样可用,只是会提示方法已过时而已。
4、测试数据:
CREATE TABLE `t` ( `id` int DEFAULT NULL, `name` varchar(10) DEFAULT NULL ) ENGINE=InnoDB DEFAULT CHARSET=utf8; CREATE TABLE `t2` ( `id` int DEFAULT NULL, `name` varchar(10) DEFAULT NULL ) ENGINE=InnoDB DEFAULT CHARSET=utf8; insert into t values (1,"june"),(2,"decli"),(3,"hello"), (4,"june"),(5,"decli"),(6,"hello"),(7,"june"), (8,"decli"),(9,"hello"),(10,"june"), (11,"june"),(12,"decli"),(13,"hello");
5、代码:
import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import java.sql.PreparedStatement; import java.sql.ResultSet; import java.sql.SQLException; import java.util.Iterator; import org.apache.hadoop.filecache.DistributedCache; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.Writable; import org.apache.hadoop.mapred.JobClient; import org.apache.hadoop.mapred.JobConf; import org.apache.hadoop.mapred.MapReduceBase; import org.apache.hadoop.mapred.Mapper; import org.apache.hadoop.mapred.OutputCollector; import org.apache.hadoop.mapred.Reducer; import org.apache.hadoop.mapred.Reporter; import org.apache.hadoop.mapred.lib.IdentityReducer; import org.apache.hadoop.mapred.lib.db.DBConfiguration; import org.apache.hadoop.mapred.lib.db.DBInputFormat; import org.apache.hadoop.mapred.lib.db.DBOutputFormat; import org.apache.hadoop.mapred.lib.db.DBWritable; /** * Function: 测试 mr 与 mysql 的数据交互,此测试用例将一个表中的数据复制到另一张表中 * 实际当中,可能只需要从 mysql 读,或者写到 mysql 中。 * date: 2013-7-29 上午2:34:04 <br/> * @author june */ public class Mysql2Mr { // DROP TABLE IF EXISTS `hadoop`.`studentinfo`; // CREATE TABLE studentinfo ( // id INTEGER NOT NULL PRIMARY KEY, // name VARCHAR(32) NOT NULL); public static class StudentinfoRecord implements Writable, DBWritable { int id; String name; public StudentinfoRecord() { } public void readFields(DataInput in) throws IOException { this.id = in.readInt(); this.name = Text.readString(in); } public String toString() { return new String(this.id + " " + this.name); } @Override public void write(PreparedStatement stmt) throws SQLException { stmt.setInt(1, this.id); stmt.setString(2, this.name); } @Override public void readFields(ResultSet result) throws SQLException { this.id = result.getInt(1); this.name = result.getString(2); } @Override public void write(DataOutput out) throws IOException { out.writeInt(this.id); Text.writeString(out, this.name); } } // 记住此处是静态内部类,要不然你自己实现无参构造器,或者等着抛异常: // Caused by: java.lang.NoSuchMethodException: DBInputMapper.<init>() // http://stackoverflow.com/questions/7154125/custom-mapreduce-input-format-cant-find-constructor // 网上脑残式的转帖,没见到一个写对的。。。 public static class DBInputMapper extends MapReduceBase implements Mapper<LongWritable, StudentinfoRecord, LongWritable, Text> { public void map(LongWritable key, StudentinfoRecord value, OutputCollector<LongWritable, Text> collector, Reporter reporter) throws IOException { collector.collect(new LongWritable(value.id), new Text(value.toString())); } } public static class MyReducer extends MapReduceBase implements Reducer<LongWritable, Text, StudentinfoRecord, Text> { @Override public void reduce(LongWritable key, Iterator<Text> values, OutputCollector<StudentinfoRecord, Text> output, Reporter reporter) throws IOException { String[] splits = values.next().toString().split(" "); StudentinfoRecord r = new StudentinfoRecord(); r.id = Integer.parseInt(splits[0]); r.name = splits[1]; output.collect(r, new Text(r.name)); } } public static void main(String[] args) throws IOException { JobConf conf = new JobConf(Mysql2Mr.class); DistributedCache.addFileToClassPath(new Path("/tmp/mysql-connector-java-5.0.8-bin.jar"), conf); conf.setMapOutputKeyClass(LongWritable.class); conf.setMapOutputValueClass(Text.class); conf.setOutputKeyClass(LongWritable.class); conf.setOutputValueClass(Text.class); conf.setOutputFormat(DBOutputFormat.class); conf.setInputFormat(DBInputFormat.class); // // mysql to hdfs // conf.setReducerClass(IdentityReducer.class); // Path outPath = new Path("/tmp/1"); // FileSystem.get(conf).delete(outPath, true); // FileOutputFormat.setOutputPath(conf, outPath); DBConfiguration.configureDB(conf, "com.mysql.jdbc.Driver", "jdbc:mysql://192.168.1.101:3306/test", "root", "root"); String[] fields = { "id", "name" }; // 从 t 表读数据 DBInputFormat.setInput(conf, StudentinfoRecord.class, "t", null, "id", fields); // mapreduce 将数据输出到 t2 表 DBOutputFormat.setOutput(conf, "t2", "id", "name"); // conf.setMapperClass(org.apache.hadoop.mapred.lib.IdentityMapper.class); conf.setMapperClass(DBInputMapper.class); conf.setReducerClass(MyReducer.class); JobClient.runJob(conf); } }
6、结果:
执行两次后,你可以看到mysql结果:
mysql> select * from t2; +------+-------+ | id | name | +------+-------+ | 1 | june | | 2 | decli | | 3 | hello | | 4 | june | | 5 | decli | | 6 | hello | | 7 | june | | 8 | decli | | 9 | hello | | 10 | june | | 11 | june | | 12 | decli | | 13 | hello | | 1 | june | | 2 | decli | | 3 | hello | | 4 | june | | 5 | decli | | 6 | hello | | 7 | june | | 8 | decli | | 9 | hello | | 10 | june | | 11 | june | | 12 | decli | | 13 | hello | +------+-------+ 26 rows in set (0.00 sec) mysql>
7、日志:
13/07/29 02:33:03 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same. 13/07/29 02:33:03 INFO filecache.TrackerDistributedCacheManager: Creating mysql-connector-java-5.0.8-bin.jar in /tmp/hadoop-june/mapred/local/archive/-8943686319031389138_-1232673160_640840668/192.168.1.101/tmp-work--8372797484204470322 with rwxr-xr-x 13/07/29 02:33:03 INFO filecache.TrackerDistributedCacheManager: Cached hdfs://192.168.1.101:9000/tmp/mysql-connector-java-5.0.8-bin.jar as /tmp/hadoop-june/mapred/local/archive/-8943686319031389138_-1232673160_640840668/192.168.1.101/tmp/mysql-connector-java-5.0.8-bin.jar 13/07/29 02:33:03 INFO filecache.TrackerDistributedCacheManager: Cached hdfs://192.168.1.101:9000/tmp/mysql-connector-java-5.0.8-bin.jar as /tmp/hadoop-june/mapred/local/archive/-8943686319031389138_-1232673160_640840668/192.168.1.101/tmp/mysql-connector-java-5.0.8-bin.jar 13/07/29 02:33:03 INFO mapred.JobClient: Running job: job_local_0001 13/07/29 02:33:03 INFO mapred.MapTask: numReduceTasks: 1 13/07/29 02:33:03 INFO mapred.MapTask: io.sort.mb = 100 13/07/29 02:33:03 INFO mapred.MapTask: data buffer = 79691776/99614720 13/07/29 02:33:03 INFO mapred.MapTask: record buffer = 262144/327680 13/07/29 02:33:03 INFO mapred.MapTask: Starting flush of map output 13/07/29 02:33:03 INFO mapred.MapTask: Finished spill 0 13/07/29 02:33:03 INFO mapred.Task: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting 13/07/29 02:33:04 INFO mapred.JobClient: map 0% reduce 0% 13/07/29 02:33:06 INFO mapred.LocalJobRunner: 13/07/29 02:33:06 INFO mapred.Task: Task 'attempt_local_0001_m_000000_0' done. 13/07/29 02:33:06 INFO mapred.LocalJobRunner: 13/07/29 02:33:06 INFO mapred.Merger: Merging 1 sorted segments 13/07/29 02:33:06 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 235 bytes 13/07/29 02:33:06 INFO mapred.LocalJobRunner: 13/07/29 02:33:06 INFO mapred.Task: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting 13/07/29 02:33:07 INFO mapred.JobClient: map 100% reduce 0% 13/07/29 02:33:09 INFO mapred.LocalJobRunner: reduce > reduce 13/07/29 02:33:09 INFO mapred.Task: Task 'attempt_local_0001_r_000000_0' done. 13/07/29 02:33:09 WARN mapred.FileOutputCommitter: Output path is null in cleanup 13/07/29 02:33:10 INFO mapred.JobClient: map 100% reduce 100% 13/07/29 02:33:10 INFO mapred.JobClient: Job complete: job_local_0001 13/07/29 02:33:10 INFO mapred.JobClient: Counters: 18 13/07/29 02:33:10 INFO mapred.JobClient: File Input Format Counters 13/07/29 02:33:10 INFO mapred.JobClient: Bytes Read=0 13/07/29 02:33:10 INFO mapred.JobClient: File Output Format Counters 13/07/29 02:33:10 INFO mapred.JobClient: Bytes Written=0 13/07/29 02:33:10 INFO mapred.JobClient: FileSystemCounters 13/07/29 02:33:10 INFO mapred.JobClient: FILE_BYTES_READ=1211691 13/07/29 02:33:10 INFO mapred.JobClient: HDFS_BYTES_READ=1081704 13/07/29 02:33:10 INFO mapred.JobClient: FILE_BYTES_WRITTEN=2392844 13/07/29 02:33:10 INFO mapred.JobClient: Map-Reduce Framework 13/07/29 02:33:10 INFO mapred.JobClient: Map output materialized bytes=239 13/07/29 02:33:10 INFO mapred.JobClient: Map input records=13 13/07/29 02:33:10 INFO mapred.JobClient: Reduce shuffle bytes=0 13/07/29 02:33:10 INFO mapred.JobClient: Spilled Records=26 13/07/29 02:33:10 INFO mapred.JobClient: Map output bytes=207 13/07/29 02:33:10 INFO mapred.JobClient: Map input bytes=13 13/07/29 02:33:10 INFO mapred.JobClient: SPLIT_RAW_BYTES=75 13/07/29 02:33:10 INFO mapred.JobClient: Combine input records=0 13/07/29 02:33:10 INFO mapred.JobClient: Reduce input records=13 13/07/29 02:33:10 INFO mapred.JobClient: Reduce input groups=13 13/07/29 02:33:10 INFO mapred.JobClient: Combine output records=0 13/07/29 02:33:10 INFO mapred.JobClient: Reduce output records=13 13/07/29 02:33:10 INFO mapred.JobClient: Map output records=13
8、REF:
新版 API 写法:
http://superlxw1234.iteye.com/blog/1880712
老版:
http://blog.csdn.net/dajuezhao/article/details/5799371
http://www.zhengmenbb.com/archives/583.htm