TF-IDF与余弦相似性的应用(一):自动提取关键词
这个标题看上去好像很复杂,其实我要谈的是一个很简单的问题。
有一篇很长的文章,我要用计算机提取它的关键词(Automatic Keyphrase extraction),完全不加以人工干预,请问怎样才能正确做到?
这个问题涉及到数据挖掘、文本处理、信息检索等很多计算机前沿领域,但是出乎意料的是,有一个非常简单的经典算法,可以给出令人相当满意的结果。它简单到都不需要高等数学,普通人只用 10 分钟就可以理解,这就是我今天想要介绍的 TF-IDF 算法。
让我们从一个实例开始讲起。假定现在有一篇长文《中国的蜜蜂养殖》,我们准备用计算机提取它的关键词。
一个容易想到的思路,就是找到出现次数最多的词。如果某个词很重要,它应该在这篇文章中多次出现。于是,我们进行"词频"(Term Frequency,缩写为 TF)统计。
结果你肯定猜到了,出现次数最多的词是----"的"、"是"、"在"----这一类最常用的词。它们叫做"停用词"(stop words),表示对找到结果毫无帮助、必须过滤掉的词。
假设我们把它们都过滤掉了,只考虑剩下的有实际意义的词。这样又会遇到了另一个问题,我们可能发现"中国"、"蜜蜂"、"养殖"这三个词的出现次数一样多。这是不是意味着,作为关键词,它们的重要性是一样的?
显然不是这样。因为"中国"是很常见的词,相对而言,"蜜蜂"和"养殖"不那么常见。如果这三个词在一篇文章的出现次数一样多,有理由认为,"蜜蜂"和"养殖"的重要程度要大于"中国",也就是说,在关键词排序上面,"蜜蜂"和"养殖"应该排在"中国"的前面。
所以,我们需要一个重要性调整系数,衡量一个词是不是常见词。如果某个词比较少见,但是它在这篇文章中多次出现,那么它很可能就反映了这篇文章的特性,正是我们所需要的关键词。
用统计学语言表达,就是在词频的基础上,要对每个词分配一个"重要性"权重。最常见的词("的"、"是"、"在")给予最小的权重,较常见的词 ("中国")给予较小的权重,较少见的词("蜜蜂"、"养殖")给予较大的权重。这个权重叫做"逆文档频率"(Inverse Document Frequency,缩写为 IDF),它的大小与一个词的常见程度成反比。
知道了"词频"(TF)和"逆文档频率"(IDF)以后,将这两个值相乘,就得到了一个词的 TF-IDF 值。某个词对文章的重要性越高,它的 TF-IDF 值就越大。所以,排在最前面的几个词,就是这篇文章的关键词。
下面就是这个算法的细节。
第一步,计算词频。
考虑到文章有长短之分,为了便于不同文章的比较,进行"词频"标准化。
或者
第二步,计算逆文档频率。
这时,需要一个语料库(corpus),用来模拟语言的使用环境。
如果一个词越常见,那么分母就越大,逆文档频率就越小越接近0。分母之所以要加1,是为了避免分母为0(即所有文档都不包含该词)。log 表示对得到的值取对数。
第三步,计算 TF-IDF。
可以看到,TF-IDF 与一个词在文档中的出现次数成正比,与该词在整个语言中的出现次数成反比。所以,自动提取关键词的算法就很清楚了,就是计算出文档的每个词的 TF-IDF 值,然后按降序排列,取排在最前面的几个词。
还是以《中国的蜜蜂养殖》为例,假定该文长度为 1000 个词,"中国"、"蜜蜂"、"养殖"各出现 20 次,则这三个词的"词频"(TF)都为 0.02。然后,搜索 Google 发现,包含"的"字的网页共有 250 亿张,假定这就是中文网页总数。包含"中国"的网页共有 62.3 亿张,包含"蜜蜂"的网页为 0.484 亿张,包含"养殖"的网页为 0.973 亿张。则它们的逆文档频率(IDF)和 TF-IDF 如下:
从上表可见,"蜜蜂"的 TF-IDF 值最高,"养殖"其次,"中国"最低。(如果还计算"的"字的 TF-IDF,那将是一个极其接近 0 的值。)所以,如果只选择一个词,"蜜蜂"就是这篇文章的关键词。
除了自动提取关键词,TF-IDF 算法还可以用于许多别的地方。比如,信息检索时,对于每个文档,都可以分别计算一组搜索词("中国"、"蜜蜂"、"养殖")的 TF-IDF,将它们相加,就可以得到整个文档的 TF-IDF。这个值最高的文档就是与搜索词最相关的文档。
TF-IDF 算法的优点是简单快速,结果比较符合实际情况。缺点是,单纯以"词频"衡量一个词的重要性,不够全面,有时重要的词可能出现次数并不多。而且,这种算法无法体现词的位置信息,出现位置靠前的词与出现位置靠后的词,都被视为重要性相同,这是不正确的。
下一次,我将用 TF-IDF 结合余弦相似性,衡量文档之间的相似程度。