MongoDB的监控与性能优化
mongodb可以通过profile来监控数据,进行优化。
查看当前是否开启profile功能用命令
db.getProfilingLevel() 返回level等级,值为0|1|2,分别代表意思:0代表关闭,1代表记录慢命令,2代表全部
开始profile功能为
db.setProfilingLevel(level); #level等级,值同上
level为1的时候,慢命令默认值为100ms,更改为db.setProfilingLevel(level,slowms)如db.setProfilingLevel(1,50)这样就更改为50毫秒
通过db.system.profile.find() 查看当前的监控日志。
如:
> db.system.profile.find({millis:{$gt:500}}) { "ts" : ISODate("2011-07-23T02:50:13.941Z"), "info" : "query order.order reslen:11022 nscanned:672230 \nquery: { status: 1.0 } nreturned:101 bytes:11006 640ms", "millis" : 640 } { "ts" : ISODate("2011-07-23T02:51:00.096Z"), "info" : "query order.order reslen:11146 nscanned:672302 \nquery: { status: 1.0, user.uid: { $gt: 1663199.0 } } nreturned:101 bytes:11130 647ms", "millis" : 647 }
这里值的含义是
ts:命令执行时间
info:命令的内容
query:代表查询
order.order: 代表查询的库与集合
reslen:返回的结果集大小,byte数
nscanned:扫描记录数量
nquery:后面是查询条件
nreturned:返回记录数及用时
millis:所花时间
如果发现时间比较长,那么就需要作优化。
比如nscanned数很大,或者接近记录总数,那么可能没有用到索引查询。
reslen很大,有可能返回没必要的字段。
nreturned很大,那么有可能查询的时候没有加限制。
mongo可以通过db.serverStatus()查看mongod的运行状态
> db.serverStatus() { "host" : "baobao-laptop",#主机名 "version" : "1.8.2",#版本号 "process" : "mongod",#进程名 "uptime" : 15549,#运行时间 "uptimeEstimate" : 15351, "localTime" : ISODate("2011-07-23T06:07:31.220Z"),当前时间 "globalLock" : { "totalTime" : 15548525410,#总运行时间(ns) "lockTime" : 89206633, #总的锁时间(ns) "ratio" : 0.005737305027178137,#锁比值 "currentQueue" : { "total" : 0,#当前需要执行的队列 "readers" : 0,#读队列 "writers" : 0#写队列 }, "activeClients" : { "total" : 0,#当前客户端执行的链接数 "readers" : 0,#读链接数 "writers" : 0#写链接数 } }, "mem" : {#内存情况 "bits" : 32,#32位系统 "resident" : 337,#占有物理内存数 "virtual" : 599,#占有虚拟内存 "supported" : true,#是否支持扩展内存 "mapped" : 512 }, "connections" : { "current" : 2,#当前链接数 "available" : 817#可用链接数 }, "extra_info" : { "note" : "fields vary by platform", "heap_usage_bytes" : 159008,#堆使用情况字节 "page_faults" : 907 #页面故作 }, "indexCounters" : { "btree" : { "accesses" : 59963, #索引被访问数 "hits" : 59963, #所以命中数 "misses" : 0,#索引偏差数 "resets" : 0,#复位数 "missRatio" : 0#未命中率 } }, "backgroundFlushing" : { "flushes" : 259, #刷新次数 "total_ms" : 3395, #刷新总花费时长 "average_ms" : 13.108108108108109, #平均时长 "last_ms" : 1, #最后一次时长 "last_finished" : ISODate("2011-07-23T06:07:22.725Z")#最后刷新时间 }, "cursors" : { "totalOpen" : 0,#打开游标数 "clientCursors_size" : 0,#客户端游标大小 "timedOut" : 16#超时时间 }, "network" : { "bytesIn" : 285676177,#输入数据(byte) "bytesOut" : 286564,#输出数据(byte) "numRequests" : 2012348#请求数 }, "opcounters" : { "insert" : 2010000, #插入操作数 "query" : 51,#查询操作数 "update" : 5,#更新操作数 "delete" : 0,#删除操作数 "getmore" : 0,#获取更多的操作数 "command" : 148#其他命令操作数 }, "asserts" : {#各个断言的数量 "regular" : 0, "warning" : 0, "msg" : 0, "user" : 2131, "rollovers" : 0 }, "writeBacksQueued" : false, "ok" : 1 }
db.stats()查看某一个库的原先状况
> db.stats() { "db" : "order",#库名 "collections" : 4,#集合数 "objects" : 2011622,#记录数 "avgObjSize" : 111.92214441878245,#每条记录的平均值 "dataSize" : 225145048,#记录的总大小 "storageSize" : 307323392,#预分配的存储空间 "numExtents" : 21,#事件数 "indexes" : 1,#索引数 "indexSize" : 74187744,#所以大小 "fileSize" : 1056702464,#文件大小 "ok" : 1 }
查看集合记录用
> db.order.stats() { "ns" : "order.order",#命名空间 "count" : 2010000,#记录数 "size" : 225039600,#大小 "avgObjSize" : 111.96, "storageSize" : 307186944, "numExtents" : 18, "nindexes" : 1, "lastExtentSize" : 56089856, "paddingFactor" : 1, "flags" : 1, "totalIndexSize" : 74187744, "indexSizes" : { "_id_" : 74187744#索引为_id_的索引大小 }, "ok" : 1 }
mongostat命令查看运行中的实时统计,表示每秒实时执行的次数
mongodb还提供了一个机遇http的监控页面,可以访问http://ip:28017来查看,这个页面基本上是对上面的这些命令做了一下综合,所以这里不细述了。
二.mongodb的优化
根据上面这些监控手段,找到问题后,我们可以进行优化
上面找到了某一下慢的命令,现在我们可以通过执行计划跟踪一下,如
> db.order.find({ "status": 1.0, "user.uid": { $gt: 2663199.0 } }).explain() { "cursor" : "BasicCursor",#游标类型 "nscanned" : 2010000,#扫描数量 "nscannedObjects" : 2010000,#扫描对象 "n" : 337800,#返回数据 "millis" : 2838,#耗时 "nYields" : 0, "nChunkSkips" : 0, "isMultiKey" : false, "indexOnly" : false, "indexBounds" : {#使用索引(这里没有) } }对于这样的,我们可以创建索引
可以通过 db.collection.ensureIndex({"字段名":1}) 来创建索引,1为升序,-1为降序,在已经有多数据的情况下,可用后台来执行,语句db.collection.ensureIndex({"字段名":1} , {backgroud:true})
获取索引用db.collection.getIndexes() 查看
这里我们创建一个user.uid的索引 >db.order.ensureIndex({"user.uid":1})
创建后重新执行
db.order.find({ "status": 1.0, "user.uid": { $gt: 2663199.0 } }).explain() { "cursor" : "BtreeCursor user.uid_1", "nscanned" : 337800, "nscannedObjects" : 337800, "n" : 337800, "millis" : 1371, "nYields" : 0, "nChunkSkips" : 0, "isMultiKey" : false, "indexOnly" : false, "indexBounds" : { "user.uid" : [ [ 2663199, 1.7976931348623157e+308 ] ] } }
扫描数量减少,速度提高。mongodb的索引设计类似与关系数据库,按索引查找加快书读,但是多了会对写有压力,所以这里就不再叙述了。
2.其他优化可以用hint强制索引查找,返回只是需要的数据,对数据分页等。